PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

RT-LAB platform for real-time implementation of luenberger observer based speed sensorless control of induction motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes RT-LAB platform for realtime implementation of Luenberger observer based on speed sensorless scalar control of induction motor. The observed shaft speed is derived from lyapunov’s theory. It is shown by an extensive study that this Luenberger observer with PI anti-windup speed controller is completely satisfactory at (nominal, variable, reverse) speed references and it is also robust to load torque disturbance. The sensorless control algorithm along with the proposed Luenberger observer is modeled, built in the Host PC and successfully implemented in real-time using digital simulator OP5600. The experimental results observed in the GW-Instek digital oscilloscope’s screen validate the effectiveness of the proposed Luenberger observer for speed sensorless scheme.
Twórcy
  • Laboratory of Research Control Analysis and Optimization of Electro-Energetic Systems, Tahri Mohammed University, Bechar, Algeria
  • Laboratory of Research Control Analysis and Optimization of Electro-Energetic Systems, Tahri Mohammed University, Bechar, Algeria
  • Laboratory of Research Control Analysis and Optimization of Electro-Energetic Systems, Tahri Mohammed University, Bechar, Algeria
  • Group de Recherche en Electronique Industrielle (GREI) Université du Québec à TroisRivières C.P.500, Trois-Rivières (Québec), Canada
  • Laboratory of Research Control Analysis and Optimization of Electro-Energetic Systems, Tahri Mohammed University, Bechar, Algeria
Bibliografia
  • [1] A. Abbou, T. Nasser, H. Mahmoudi, M. Akherraz, A. Essadki, “Induction Motor Controls and Implementation using dSPACE”, WSEAS Transactions on Systems and Control, vol. 7, no. 1, 2012, 26–35.
  • [2] J. Holtz, “Sensorless control of induction motor drives”, Proceedings of the IEEE, vol. 90, no. 8, 2002, 1359–1394 DOI: 10.1109/JPROC.2002.800726. 
  • [3] H. Kubota, K. Matsuse, “Speed sensorless field--oriented control of induction motor with rotor resistance adaptation”, IEEE Transactions on Industry Applications, vol. 30, no. 5, 1994, 1219–1224 DOI: 10.1109/28.315232.
  • [4] T. Chern, J. Chang, K. Tsai, “Integral-variable--structure-control-based adaptive speed estimator and resistance identifier for an induction motor”, International Journal of Control, vol. 69, no. 1, 1998, 31–48 DOI: 10.1080/002071798222910.
  • [5] Y. Kim, S. Sul, M. Park, “Speed sensorless vector control of induction motor using extended Kalman filter”, IEEE Transactions on Industry Applications, vol. 30, no. 5, 1994, 1225–1233 DOI: 10.1109/28.315233.
  • [6] C. Schauder, “Adaptive speed identification for vector control of induction motors without rotational transducers”, IEEE Transactions on Industry Applications, vol. 28, no. 5, 1992, 1054–1061 DOI: 10.1109/28.158829.
  • [7] G. Tarchała, T. Orłowska-Kowalska, “Sliding Mode Speed Observer for the Induction Motor Drive with Different Sign Function Approximation Forms and Gain Adaptation”, Przegląd Elektrotechniczny, vol. 89, no. 1a, 2013.
  • [8] I. Bendaas, F. Naceri, “A new method to minimize the chattering phenomenon in sliding mode control based on intelligent control for induction motor drives”, Serbian Journal of ElectricalEngineering, vol. 10, no. 2, 2013, 231–246 DOI: 10.2298/SJEE130108001B.
  • [9] J. Maes, J. Melkebeek, “Speed-sensorless direct torque control of induction motors using an adaptive flux observer”, IEEE Transactions on Industry Applications, vol. 36, no. 3, 2000, 778–785 DOI: 10.1109/28.845053.
  • [10] D. Casadei, G. Serra, A. Tani, L. Zarri, F. Profumo, “Performance analysis of a speed-sensorless induction motor drive based on a constant--switching-frequency DTC scheme”, IEEE Transactions on Industry Applications, vol. 39, no. 2,2003, 476–484 DOI: 10.1109/TIA.2003.808937.
  • [11] B. Akin, “State estimation techniques for speed sensorless field oriented control of inductionmotors”, M.Sc. Thesis, Middle East Technical University METU, 2003.
  • [12] S. Ao, L. Gelman, Advances in Electrical Engineering and Computational Science, Springer, 2009 DOI: 10.1007/978-90-481-2311-7.
  • [13] B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall, 2001.
  • [14] M. Suetake, I. N. da Silva, A. Goedtel, “Embedded DSP-Based Compact Fuzzy System and Its Application for Induction-Motor V/f Speed Control”,IEEE Transactions on Industrial Electronics, vol.58, no. 3, 2011, 750–760 DOI: 10.1109/TIE.2010.2047822.
  • [15] M. Bechar, A. Hazzab, M. Habbab, “Real-Time scalar control of induction motor using RT-Lab software”. In: 2017 5th International Conference on Electrical Engineering – Boumerdes (ICEE-B), 2017 DOI: 10.1109/ICEE-B.2017.8192002.
  • [16] S. T. Cha, Q. Wu, A. H. Nielsen, J. Østergaard,I. K. Park, “Real-Time Hardware-In-The-Loop (HIL) Testing for Power Electronics Controllers”.In: 2012 Asia-Pacific Power and Energy Engineering Conference, 2012, 1–6 DOI: 10.1109/APPEEC.2012.6307219.
  • [17] D. Zhang, H. Li, E. Collins, “Digital Anti-Windup PI Controllers for Variable-Speed Motor Drives Using FPGA and Stochastic Theory”, IEEE Transactions on Power Electronics, vol. 21, no. 5, 2006, 1496–1501 DOI: 10.1109/TPEL.2006.882342.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9f19dee-d58f-4b75-9d7d-6c6d26b11f54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.