PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical analysis of the functioning of test benches dedicated to testing heat pumps in electric vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Krytyczna analiza funkcjonowania stanowisk badawczych przeznaczonych do badania pomp ciepła w pojazdach elektrycznych
Języki publikacji
EN
Abstrakty
EN
Changes in the automotive industry to bring more electric and hybrid cars to market have a significant impact on the type of heating and cooling systems for vehicles. The work done so far in this area shows the considerable impact of these systems on vehicle coverage. This is due, among other things, to the fact that air conditioning systems in electric and hybrid cars have additional tasks, such as keeping the battery temperature at the right temperature. Studies also show that heating and cooling systems based on heat pump systems have the highest efficiency. The development of such systems, however, depends on a properly planned test phase under widely varying boundary conditions. Such research allows to limit the negative impact of heating and cooling systems on the range of electric cars under real operating conditions and can contribute significantly to the popularity of electric vehicles. The aim of this work is to develop a test bench concept for testing heat pumps used in electric vehicles. The impact of the assumed boundary conditions on individual system components is presented. On the basis of two examples of test stands, a critical assessment of the effectiveness of the applied methodology was made. Differences in individual systems were indicated, and the own concept of the test bench for testing heat pumps for variable input parameters was presented.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland
  • Department of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
  • [1] Granovskii M, Dincer I, Rosen MA. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. J Power Sources. 2006;159(2):1186-93. DOI: 10.1016/j.jpowsour.2005.11.086.
  • [2] Yang F, Xie Y, Deng Y, Yuan C. Predictive modelling of battery degradation and greenhouse gas emissions from U.S. state-level electric vehicle operation. Nat Commun. 2018;9:2429. DOI: 10.1038/s41467-018-04826-0.
  • [3] Varga BO, Mariasiu F. Indirect environment-related effects of electric car vehicles use. Environ Eng Manage. 2018;17:1591-9. DOI: 10.30638/eemj.2018.158.
  • [4] Nie Y, Ghamami M, Zockaie A, Xiao F. Optimization of incentive polices for plug-in electric vehicles. Transportation Res Part B: Methodological 84. 2016:103-23. DOI: 10.1016/j.trb.2015.12.011.
  • [5] Mock P, Yang Z. Driving electrification: a global comparison of fiscal incentive policy for electric vehicles. Experim Physiol. 2013;98(98):1244-6. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.8471&rep=rep1&type=pdf
  • [6] Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 2013;226(3):272-88. DOI: 10.1016/j.jpowsour.2012.10.060.
  • [7] Guo Y, Wang L, Liao C. Modelling and analysis of conducted electromagnetic interference in electric vehicle power supply system. Progress Electromagnetics Res. 2013;139:193-209. DOI: 10.2528/PIER13031101.
  • [8] Morrow K, Karner D, Francfort J. Plug-In Hybrid Electric Vehicle Charging Infrastructure Review. INL/EXT-08-15058. Idaho National Laboratory, U.S. Department of Energy, 2008. http://www.electrictechnologycenter.com/pdf/phevInfrastructureReport08.pdf.
  • [9] Bi J, Wanga Y, Shaoa S, Cheng Y. Residual range estimation for battery electric vehicle based on radial basis T function neural network. Measurement. 2018;128:197-203. DOI: 10.1016/j.measurement.2018.06.054.
  • [10] Kambly K, Bradley TH. Geographical and temporal differences in electric vehicle range due to cabin conditioning energy consumption. J Power Sources. 2015;75:468-75. DOI: 10.1016/j.jpowsour.2014.10.142.
  • [11] Genikomsakis KN, Mitrentsis G. A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. Transportaton Res. Part D. Transport Environ. 2017;50:98-118. DOI: 10.1016/j.trd.2016.10.014.
  • [12] Mruzek M, Gajdáè I, Kuèera L, Barta D. Analysis of Parameters Influencing Electric Vehicle Range. Procedia Eng. 2016;134:165-74. DOI: 10.1016/j.proeng.2016.01.056.
  • [13] Sentoff KM, Aultman-Hall L, Holmén BA. Implications of driving style and road grade for accurate vehicle activity data and emissions estimates. Transportaton Res. Part D. Transport Environ. 2015;35:175-88. DOI: 10.1016/j.trd.2014.11.021.
  • [14] Wu X, He X, Yu G, Harmandayan A, Wang Y. Energy-optimal speed control for electric vehicles on signalized arterials. IEEE Trans Intell Transp Syst. 2015;16:2786-96. DOI: 10.1109/TITS.2015.2422778.
  • [15] Yuksel T, Michalek JJ. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States. Environ Sci Technol. 2015;49:3974-80. DOI: 10.1021/es505621s.
  • [16] Yeh TJ, Chen YJ, Hwang WY, Lin JL. Incorporating fan control into air-conditioning systems to improve energy efficiency and transient response. Appl Thermal Eng. 2009;29:1955-64. DOI: 10.1016/j.applthermaleng.2008.09.017.
  • [17] Khayyam H, Nahavandi S, Hu E, Kouzani A, Chonka A, Abawajy J, et al. Intelligent energy management control of vehicle air conditioning via look-ahead system. Appl Thermal Eng. 2011;31:3147-60. DOI: 10.1016/j.applthermaleng.2011.05.023.
  • [18] Larminie J, Lowry J. Electric Vehicle Technology Explained. 2nd ed. John Wiley and John Lowry; 2012. ISBN: 978-1-119-94273-3.
  • [19] Rask E. Advanced technology vehicle lab benchmarking -Level 2 (in-depth). US DOE Vehicle Technologies Program Annual Merit Review and Peer 344 Evaluation Meeting 2014. DOI: 10.2172/1220550.
  • [20] Kwon Ch, Kim MS, Choi Y, Kim MS. Performance evaluation of a vapor injection heat pump system for electric vehicles. Int J Refrig. 2017;74:138-50. DOI: 10.1016/j.ijrefrig.2016.10.004.
  • [21] Wang H, Zhang S, Kan D. Energy and exergy analysis of R1234yf heat pump system with inner heat exchanger. Chem Eng (China). 2018;46:42-7. DOI: 10.3969/j.issn.1005-9954.2018.05.009.
  • [22] Navarro-Esbrí J, Mendoza-Miranda JM, Mota-Babiloni A, Barragán-Cervera A, Belman-Flores JM. Experimental analysis of R1234yf as a drop-in replacement for R134a in a vapor compression system. Int J Refrig. 2013;36:870-80. DOI: 10.1016/j.ijrefrig.2012.12.014.
  • [23] Zhao Y, Qi Z, Chen J, Xu B, He B. Experimental analysis of the low-GWP refrigerant R1234yf as a drop-in replacement for R134a in a typical mobile air conditioning system. Proc Institution Mechan Engineers, Part C: J Mechanical Eng Sci. 2012;226(11):2713-25. DOI: 10.1177/0954406211435583.
  • [24] Qi Z. Experimental study on evaporator performance in mobile air conditioning system using HFO-1234yf as working fluid. Appl Therm Eng. 2013;53:124-30. DOI: 10.1016/j.applthermaleng.2013.01.019.
  • [25] Lustbader J, Rugh J, Winkler J, Titov G, Chowdhury S, Leitzel L, et al. Total Thermal Management of Battery Electric Vehicles (BEVs). SAE International. 2018. DOI: 10.4271/2018-37-0026.
  • [26] Gao W, He W, Wei L, Li G, Liu Z. Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine. Energies. 2016;9:1001. DOI: 10.3390/en9121001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9f05a17-07b5-4264-b692-68f53e24226c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.