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Abstract: In this paper, we are putting forward the periodic solution of non-linear oscillators by means of variational iterative method (VIM) 
using Laplace transform. Here, we present a comparative study of the new technique based on Laplace transform and the previous tech-
niques of maximum minimum approach (MMA) and amplitude frequency formulation (AFF) for the analytical results. For the non-linear  
oscillators, MMA, AFF and VIM by Laplace transform give the same analytical results. Comparison of analytical results of VIM by Laplace 
transform with numerical results by fourth-order Runge–Kutta (RK) method conforms the soundness of the method for solving non-linear 
oscillators as well as for the time and boundary conditions of the non-linear oscillators.  
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1. INTRODUCTION 

The variational iterative method was suggested in 1990s to 
solve an oozing of with fractional deriva-tives and non-linear 
oscillator [2, 3, 4], and this method is used enormously as a main 
mathematical instrument for solving non-linear oscillators in vari-
ous sciences (e.g. see [5–10]). This is a very popu-lar method in 
the list of methods for non-linear systems, and it includes high 
citation index articles dealing with the ‘variational iterative method’ 
(VIM). This method deals with non-linear oscillators like Fangzhu 
oscillators [11], fractal Toda oscillator [12], HIV models [13], bio-
logical models [14], fractal vibration models [15], microelectrome-
chanical system oscillators [16, 17], fractal/fractional/ two-scale 
oscillators [18], interconnected spring carts [19, 20], etc. Naveed 
et al. [21, 22] investigated the ho-motopy perturbation method for 
the oscillators in nanotechnology. This paper suggests the period-
ic solution of the governing differential equations (non-linear oscil-
lators) obtained by Laplace transform and VIM. The VIM retains a 
series of linear equations that can be solved by Laplace trans-
form. This method identifies some obvious benefits, and its La-
grange multiplier is much trouble-free than that of variational 
theory [23–27]. The general recognition of the Lagrange multiplier 
by Laplace transform is given by Eq. (5) in [28].  

Consider a non-linear oscillator in the equation form as 

𝑢′′(𝑡) + 𝑓(𝑢) = 0                                                 (1)                                                                

with initial conditions 𝑢(0) = 𝐴, 𝑢′(0) = 0. Eq. (1) can be 
written as: 

𝑢′′ + 𝑤2𝑢 + 𝑝(𝑢) = 0                               (2)                                                                

where w is unknown frequency, p(u) = 𝑓(𝑢) − 𝑤2𝑢. As 
claimed by the VIM, the correction functional which is basically a 
convolution for Eq. (2) is given as [29–33]: 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜁(𝑡, 𝜉)[𝑢𝑛
′′(𝜉) + 𝑤2𝑢𝑛(𝜉) +

𝑡

0

𝑝(𝑢𝑛)]𝑑𝜉        𝑛 = 0,1,2, …                                                        (3)                                                                

where 𝜁 is a general Lagrange multiplier, and it can be choicely 
determined by immobilised conditions of Eq. (3) with respect to 
using variational theory [10–13]. The subscript n denotes the nth 
approximation of the solution and 𝑝 is a restricted variation. This 

convolution gives the value of 𝜁 by making 𝑢𝑛(𝑡) immobilised. 
This method is applicable to derive the analytical solution for the 
motion of non-linear unbound vibration of conservative, single 
degree of freedom systems. 

Now we implement this method to justify the motion of two 
oscillators by making Laplace transform in the well-known VIM to 
obtain the relationship between amplitude and angular frequency. 
This method is equally good when compared with the older 
versions of VIM, Ganji and Azimi [1] maximum minimum approach 
(MMA), and amplitude frequency formulation (AFF) to non-linear 
oscillation systems. For the first problem shown in (Fig. 1), 

consider a block of mass 𝑚1, which is on the horizontal surface, 

while another block of mass 𝑚2 is just slipped vertical and is also 
attached with mass 𝑚1. In this system, the length of support is L, 
gravitational acceleration produced due to free motion of blocks is 

denoted by g and K is spring constant. If we assume that 𝑢 =
𝑥

𝐿
≪ 1, then the equation in the range of time and boundary 

conditions is given as: 
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𝑢′′ + (
𝑚2

𝑚1
) 𝑢2𝑢′′ + (

𝑚2

𝑚1
) 𝑢𝑢′2 + (

𝐾

𝑚1
+

𝑚2𝒈

𝑚1
) 𝑢 +

𝑚2𝒈

2𝐿𝑚1
𝑢3 =

0,        𝑢(0) = 𝐴,      𝑢′(0) = 0                                                 (4) 
where both u, the generalised displacement, and t, the time 
variable, are dimensionless. 

 

Fig. 1. Geometry of the first Problem 

2. APPLICATIONS OF LAPLACE-BASED VIM  
TO THE FIRST PROBLEM 

In order to solve the first problem given in Eq. (4), by making 
Laplace transform in VIM, we rewrite the problem as: 

 𝑢′′ + (
𝑚2

𝑚1
) 𝑢2𝑢′′ + (

𝑚2

𝑚1
) 𝑢𝑢′2 + 𝑤0

2𝑢 +
𝑚2𝒈

2𝐿𝑚1
𝑢3 = 0,        

𝑢(0) = 𝐴,      𝑢′(0) = 0                                                 (5) 

where w0
2 = (

K

m1
+

m2g

Lm1
). We can rewrite the equation in the 

form: 

(1 + 𝛼𝑢2)𝑢′′ + 𝛼𝑢𝑢′2 + 𝑤0
2𝑢 + 𝛽𝑢3 = 0,    𝑢(0) =

𝐴,    𝑢′(0) = 0                          (6) 

where α =
m2

m1
 and β =

m2g

2Lm1
. To solve the above equation, we 

use VIM by Laplace transform. To approach the correctional 
functional, we write the above equation in general non-linear 
oscillator form as: 

𝑢′′ + 𝑤2𝑢 + 𝑝(𝑢) = 0                     (7) 

where 

𝑝(𝑢) = 𝛼𝑢2𝑢′′ + 𝛼𝑢𝑢′2 + (𝑤0
2 + 𝑤2)𝑢 + 𝛽𝑢3         (8) 

The correctional functional is defined as 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜁(𝑡, 𝜉)[𝑢𝑛
′′(𝜉) + 𝑤2𝑢𝑛(𝜉) +

𝑡

0

𝑝(𝑢𝑛)]𝑑𝜉                     (9) 

where the Lagrange multiplier is given by 𝜁(𝜉)= −
1

𝑤
sin𝑤𝑡. 

Now, by applying Laplace transform to Eq. (9), we have 

𝐿[𝑢𝑛+1(𝑡)] = 𝐿[𝑢𝑛(𝑡)]] 

−𝐿[∫
1

𝑤
sin𝑤(𝑡 − 𝜉)[𝑢𝑛

′′(𝜉) + 𝑤2𝑢𝑛(𝜉) + 𝑝(𝑢𝑛)]𝑑𝜉
𝑡

0

 

𝐿[𝑢𝑛+1(𝑡)] = 𝐿[𝑢𝑛(𝑡)] −
1

𝑤
𝐿[sin𝑤𝑡]𝐿[𝑢𝑛

′′ + 𝛼𝑢𝑛𝑢′𝑛
2 +

𝛼𝑢𝑛
2𝑢𝑛

′′ + 𝑤0
2𝑢𝑛 + 𝛽𝑢𝑛

3]                     (10) 

For a first-order approximate solution, put 𝑛 = 0, we get 

𝐿[𝑢1(𝑡)] = 𝐿[𝑢0(𝑡)] −
1

𝑤
𝐿[sin𝑤𝑡]𝐿[𝑢0

′′ + 𝛼𝑢0𝑢′0
2 +

𝛼𝑢0
2𝑢0

′′ + 𝑤0
2𝑢0 + 𝛽𝑢0

3]  

Using the trail function u0(t) = Acoswt, the above equation 
gets the form 

𝐿[𝑢1(𝑡)] = 𝐿[𝐴cos𝑤𝑡] −
1

𝑤
𝐿[sin𝑤𝑡]𝐿[−𝐴𝑤2cos𝑤𝑡 −

𝛼𝐴3𝑤2cos3𝑤𝑡 + 𝛼𝐴3𝑤2cos𝑤𝑡sin2𝑤𝑡 + 𝑤0
2𝐴cos𝑤𝑡 +

𝛽𝐴3cos3𝑤𝑡]  

𝐿[𝑢1(𝑡)] = 𝐿[𝐴cos𝑤𝑡] −
1

𝑤
𝐿[sin𝑤𝑡]𝐿[−𝐴𝑤2cos𝑤𝑡  

−
𝛼𝐴3𝑤2

4
(3cos𝑤𝑡 − cos3𝑤𝑡) +

𝛼𝐴3𝑤2

4
(cos𝑤𝑡  

+cos3𝑤𝑡) + 𝑤0
2𝐴cos𝑤𝑡 +

𝛽𝐴3

4
(3cos𝑤𝑡 − cos3𝑤𝑡)]   

After some simplification, we have the expression as 

L[u1(t)] = L[Acoswt]  

−
1

𝑤
[−𝐴𝑤2 −

𝛼𝐴3𝑤2

2
+ 𝑤0

2𝐴 +

3𝛽𝐴3

4
] 𝐿[sin𝑤𝑡]𝐿[cos𝑤𝑡] −

1

𝑤
[

𝛼𝐴3𝑤2

4
−

𝛽𝐴3

4
] 𝐿[sin𝑤𝑡]𝐿[cos3𝑤𝑡]   

By inverse Laplace transform, the expression for the first-
order approximate solution is 

𝑢1(𝑡) = 𝐴cos𝑤𝑡 −
1

𝑤
[−𝐴𝑤2 −

𝛼𝐴3𝑤2

2
+ 𝑤0

2𝐴 +
3𝛽𝐴3

4
]  

(
1

2
𝑡sin𝑤𝑡) −

1

𝑤
[

𝛼𝐴3𝑤2

4
−

𝛽𝐴3

4
] (

1

8𝑤
cos𝑤𝑡 − cos3𝑤𝑡)  

 

(11) 
In Eq. (11), the second term is a secular term because it 

grows in amplitude with time, so avoiding the secular term in 
approximate solution requires that  

−
1

𝑤
[−𝐴𝑤2 −

𝛼𝐴3𝑤2

2
+ 𝑤0

2𝐴 +
3𝛽𝐴3

4
] = 0  

𝐴𝑤2 +
𝛼𝐴3𝑤2

2
= 𝑤0

2𝐴 +
3𝛽𝐴3

4
  

𝑤2 =
𝑤0

2+
3𝐴2

4

𝑚2𝒈

2𝐿𝑚1

1+
𝑚2𝐴2

2𝑚1

  

This leads to the expression for angular frequency of the sys-
tem: 

𝑤 =
1

2
√

8𝑤0
2𝐿𝑚1+3𝑚2𝒈𝐴2

𝐿(𝑚2𝐴2+2𝑚1)
  

This expression for angular frequency of the first problem is 
exactly the same as obtained by the MMA in Eq. (11) and the AFF 
method in Eq. (22) by Ganji and Azimi [1] and He in [34]. So, the 
periodic solution in this case becomes the same as that of MMA 
and AFF, while the first-order approximate solution is given as 

𝑢1(𝑡) = 𝐴cos𝑤𝑡 −
1

𝑤
[

𝛼𝐴3𝑤2

4
−

𝛽𝐴3

4
] (

1

8𝑤
cos𝑤𝑡 − cos3𝑤𝑡).  

(12) 

3. APPLICATION OF THE LAPLACE-BASED VIM  
TO THE SECOND PROBLEM 

The second problem deals with the motion of simple pendu-
lum devoted to a spinning rigid frame shown in (Fig. 2), which has 
the differential equation: 
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𝜃′′ + (1 − 𝛬cos 𝜃 )sin𝜃 = 0,    𝜃′(0) = 0, 𝜃(0) = 𝐴    (13) 

where θ is generalised displacement without dimensions, t is the 

time variable and Λ indicates the relation Λ =
w2r

g
. 

 

Fig. 2. Geometry of the first Problem 

In order to solve this problem by using VIM with Laplace trans-
form, we write Eq. (13) as 

𝜃′′ + (1 − 𝛬)𝜃 + (
−1

6
−

2𝛬

3
) 𝜃3 + (

1

120
−

2𝛬

15
) 𝜃5 =

0,     𝜃′(0) = 0,   𝜃(0) = 𝐴                                                   (14) 

Eq. (14) in the form of general non-linear oscillator has the 
form  

𝜃′′ + 𝑤2𝜃 + 𝑝(𝜃) = 0, where 𝑝(𝜃) = −𝑤2𝜃 + (1 − 𝛬)𝜃 +

(
−1

6
−

2𝛬

3
) 𝜃3 + (

1

120
−

2𝛬

15
) 𝜃5.  

The correctional functional to approximate solution is defined 
as 

𝜃𝑛+1(𝑡) = 𝜃𝑛(𝑡) + ∫ 𝜁(𝑡, 𝜉)[𝜃𝑛
′′(𝜉) + 𝑤2𝜃𝑛(𝜉) +

𝑡

0

𝑝(𝜃𝑛)]𝑑𝜉  

By using Lagrange multiplier ζ(ξ) = −
1

w
sinwt, we have the 

iterative formula 

𝜃𝑛+1(𝑡) = 𝜃𝑛(𝑡) −
1

𝑤
∫ sin(𝑡 − 𝜉)[𝜃′′ + (1 − 𝛬)𝜃 +

𝑡

0

(
−1

6
−

2𝛬

3
) 𝜃3 + (

1

120
−

2𝛬

15
) 𝜃5]𝑑𝜉  

Now, by applying Laplace transform on the above iterative 
formula, we get 

𝐿[𝜃𝑛+1(𝑡)] = 𝐿[𝜃𝑛(𝑡)] −
1

𝑤
𝐿[sin𝑤𝑡]𝐿[𝜃′′ + (1 − 𝛬)𝜃 +

(
−1

6
−

2𝛬

3
) 𝜃3 + (

1

120
−

2𝛬

15
) 𝜃5]  

For the first-order approximate solution, use n = 0 and trail 

function u0(t) = Acoswt. 

𝐿[𝜃1(𝑡)] = 𝐿[𝐴cos𝑤𝑡] −
1

𝑤
𝐿[sin𝑤𝑡]𝐿[−𝐴𝑤2cos𝑤𝑡 +

(1 − 𝛬)𝐴cos𝑤𝑡 + (
−1

6
−

2𝛬

3
) 𝐴3cos3𝑤𝑡 + (

1

120
−

2𝛬

15
) 𝐴5cos5𝑤𝑡]    

𝐿[𝜃1(𝑡)] = 𝐿[𝐴cos𝑤𝑡] −
1

𝑤
𝐿[sin𝑤𝑡]𝐿[−𝐴𝑤2cos𝑤𝑡 +

(1 − 𝛬)𝐴cos𝑤𝑡 + (
−1

6
−

2𝛬

3
)

𝐴3

4
(cos3𝑤𝑡 + 3cos𝑤𝑡) +

(
1

120
−

2𝛬

15
)

𝐴5

16
(cos5𝑤𝑡 + 5cos3𝑤𝑡 + 10cos𝑤𝑡)]  

After simplification, we get 

𝐿[𝜃1(𝑡)] = 𝐿[𝐴cos𝑤𝑡] −
1

𝑤
(−𝐴𝑤2 + (1 − 𝛬)𝐴 −

𝐴3

8
+

𝐴3𝛬

2
+

𝐴5

192
−

𝐴5𝛬

12
) 𝐿 (

𝑡

2
sin𝑤𝑡) −

1

𝑤
(−

𝐴3

24
+

𝐴3𝛬

6
+

𝐴5

384
−

𝐴5𝛬

24
) 𝐿(

1

8𝑤
(cos𝑤𝑡 − cos3𝑤𝑡))  

By applying inverse Laplace, the expression reduces to 

𝜃1(𝑡) = 𝐴cos𝑤𝑡 −
1

𝑤
(−𝐴𝑤2 + (1 − 𝛬)𝐴 −

𝐴3

8
+

𝐴3𝛬

2
+

𝐴5

192
−

𝐴5𝛬

12
) (

𝑡

2
sin𝑤𝑡) −

1

𝑤
(−

𝐴3

24
+

𝐴3𝛬

6
+

𝐴5

384
−

𝐴5𝛬

24
) (

1

8𝑤
(cos𝑤𝑡 − cos3𝑤𝑡))   

Here, in this equation, the second term is a secular term be-
cause it grows in amplitude with time, so avoiding the secular term 
in approximate solution required that  

−
1

𝑤
(−𝐴𝑤2 + (1 − 𝛬)𝐴 −

𝐴3

8
+

𝐴3𝛬

2
+

𝐴5

192
−

𝐴5𝛬

12
) = 0  

𝑤2 = ((1 − 𝛬) −
𝐴2

8
+

𝐴2𝛬

2
+

𝐴4

192
−

𝐴4𝛬

12
)  

The expression for the angular frequency is given as: 

𝑤 = √1 − 𝛬 −
𝐴2

8
+

𝐴2𝛬

2
+

𝐴4

192
−

𝐴4𝛬

12
   

The expression for angular frequency of the second problem 
is exactly the same as obtained by the MMA in Eq. (30) and the 
AFF method in Eq. (35) by Ganji and Azimi [1]. So, the periodic 
solution in this case becomes the same as that of MMA and AFF, 
while the approximate solution is 

𝜃1(𝑡) = 𝐴cos𝑤𝑡 −
1

𝑤
(−

𝐴3

24
+

𝐴3𝛬

6
+

𝐴5

384
−

𝐴5𝛬

24
) ∗  

(
1

8𝑤
(cos𝑤𝑡 − cos3𝑤𝑡))                                                        (15) 

4. RESULTS AND DISCUSSION FOR THE FIRST PROBLEM 

In this section, we have compared the numerical solution of 
non-linear oscillator (4) obtained by fourth-order Runge–Kutta 
(RK) method with analytical solutions obtained by Laplace based 
VIM. The analytical solution by VIM using Laplace transform 
coincides analytically with MMA and AFF techniques. In (Fig. 3), 
the comparison between analytical solution by VIM, VIM with 
Laplace and numerical solution by fourth-order RK method shows 
the validity of Laplace-based VIM. 

In this session, we have characterised the error analysis of the 
analytical solution by VIM with Laplace transform and numerical 
solution by fourth order RK method. In Table 1, the error terms, e1 

and e2 are by VIM and VIM with Laplace transform, respectively. 

Error e2 conforms the validity of the solution by VIM with Laplace 
transform. 
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Fig. 3. Comparison among VIM, VIM with Laplace and fourth-order  

           RK method in the first problem for =
π

6
 ; g = 9.81 m s−2,  

          K = 100 N m−2, m1 = 5 kg, m2 = 1 kg, L= 1 m, α =
1

5
,  

          β = 0.981 s−2 

Tab. 1. Error analysis for the first problem 
Ti-
me 

step
s 

Previous 
results 

Our results RK method 𝒆𝟏 𝒆𝟐 

1 
0.46813063

7 
0.40261390

7 
0.46921989

3 
0.0010892

56 
0.06660

6 

2 
0. 

313478406 
0.23957659

7 
0.31584200

7 
0.0023636

01 
0.07626

54 

3 
0.09240866

51 
0.02185403

8 
0.09344536

0 
0.0010366

95 
0.07159

13 

4 
−0.1482399

47 
−0.2091044

15 
−0.1499240

01 
0.0016840

53 
0.05918

04 

5 
−0.3574805

65 
−0.4181372

75 
−0.3597805

44 
0.0022999

79 
0.05835

67 

6 
−0.4909808

17 
−0.5611373

59 
−0.4916960

84 
0.0007152

66 
0.06944

13 

7 
−0.5204556

48 
−0.5940985

06 
−0.5205183

33 
0.0422374

27 
0.07358

02 

8 
−0.4396601

45 
−0.5050172

74 
−0.4411220

41 
0.0014618

96 
0.06389

52 

9 
−0.2657126

68 
−0. 

324704000 
−0.2679607

52 
0.0022480

84 
0.05674

32 

10 
−0.0354679

36 
−0.1005952

90 
−0.0357624

60 
0.0002945

24 
0.06483

28 

5. RESULTS AND DISCUSSION  
FOR THE SECOND PROBLEM 

In this sectio, we have compared the numerical solution of 
non-linear oscillator (13) obtained by fourth-order RK method and 
the analytical solution. The analytical solution by VIM using La-
place transform coincides analytically with MMA and AFF tech-
niques. In (Fig. 4), the comparison among analytical solution by 
VIM, VIM with Laplace and numerical solution by fourth-order RK 
method shows the validity of VIM with Laplace. 

In this session, we have characterised the error analysis of the 
analytical solution by VIM with Laplace transform and numerical 

solution by fourth-order RK method. In Table 2, the error terms e1 
and e2 are by VIM and VIM with Laplace transform, respectively. 

Error e2 conforms the validity of the solution by VIM with Laplace 
transform. 

 

Fig. 4. Comparison among VIM, VIM with Laplace and fourth-order  

           RK method in the second problem for A =
π

3
 and Λ = 0.25 

Tab. 2. Error analysis for the second problem 
Time 
step

s 

Previous 
results 

Our 
results 

RK meth-
od 

𝒆𝟏 𝒆𝟐 

1 
1.0433712

79 
1.0434201

73 
1.0434298

64 
0.0394746

66 
0.0240215

87 

2 
1.0319204

22 
1.0321124

40 
1.0321494

62 
0.0002290

41 
0.0000370

22 

3 
1.0129286

61 
1.0133475

97 
1.0134246

79 
0.0004960

18 
0.0000770

82 

4 
0.9865347

78 
0.9872478

02 
0.9873704

28 
0.0008356

50 
0.0001226

26 

5 
0.9529316

53 
0.9539842

20 
0.9541496

63 
0.0012180

09 
0.0001654

43 

6 
0.9123648

44 
0.9137770

51 
0.9139746

73 
0.0016098

28 
0.0001976

22 

7 
0.8651308

00 
0.8668954

16 
0.8671086

71 
0.0019778

71 
0.0002132

55 

8 
0.8115746

89 
0.8136570

09 
0.8138661

37 
0.0022914

48 
0.0002091

28 

9 
0.7520878

81 
0.7544274

05 
0.7546131

27 
0.0025252

46 
0.0001857

22 

10 
0.6871050

84 
0.6896189

23 
0.6897656

26 
0.0026605

43 
0.0001467

03 

6. CONCLUSIONS 

In this paper, VIM by Laplace transform is applied to non-
linear oscillators to compute the analytical results. Earlier, two 
techniques, MMA and AFF, were used for analytical results. Our 
technique, VIM with Laplace, coincides analytically with MMA and 
AFF, but is graphically slightly different than that of the numerical 
solution by fourth-order RK method, MMA and AFF. 
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