PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Metal Oxide-Modified Aerated Concrete for Cleaning Flue Gases from Carbon Monoxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The necessity of development of technical solutions that will allow to reduce carbon monoxide emissions of flue gases of industrial productions is substantiated. It is shown that the most rational design solution to the problem of carbon monoxide pollution during the firing of electrode blanks is the use of aerated concrete blocks with a catalyst, which can be quickly and conveniently located directly on the carbon material of the “green” electrodes pouring in the subfloor space of the firing furnaces. Modified by oxides of Mn4+, Fe2+, Fe3+, Cu2+, Cr3+ -catalysts based on aerated concrete were obtained. It is shown that in an empty reactor in the temperature range 200–400 °С the degree of conversion of carbon monoxide in the absence of a catalyst is zero. It is established that on the investigated catalysts based on aerated concrete 100% oxidation of carbon monoxide is achieved at a temperature of 390 °C in the case of using a mixture of catalyst powders 30% CuO + 70% MnO2, 40% CuO + 60% MnO2, 50% Fe (FexCr1-x) 2O4 + 50% MnO2; 50% Fe3O4 + 50 % MnO2. It is determined that the addition of ferrite catalyst powder in aerated concrete in a mixture or without manganese dioxide does not critically affect the mechanical properties of the products.
Słowa kluczowe
Rocznik
Strony
104--113
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenue 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenue 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenue 37/4, 03056 Kyiv, Ukraine
  • L. V. Pisarzhevskii Institute of Physical Chemistry of The National Academy of Sciences of Ukraine, Science Avenue, 31, 03028 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenue 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenue 37/4, 03056 Kyiv, Ukraine
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenue 37/4, 03056 Kyiv, Ukraine
  • L. V. Pisarzhevskii Institute of Physical Chemistry of The National Academy of Sciences of Ukraine, Science Avenue, 31, 03028 Kyiv, Ukraine
Bibliografia
  • 1. Basaraba Y.B., Zasadnyi Т.М. 2014. Prospects for the use of zeolites of the Sokyrnytsia deposit for natural water purification. Ecological Safety and Balanced Use of Resources, 1(11), 46–52. (in Ukrainian).
  • 2. Choi K.-H., Lee D.-H., Kim H.-S., Yoon Y.-C., Park C.-S., Kim Y.H. 2016. Reaction Characteristics of Precious-Metal-Free Ternary Mn–Cu–M (M = Ce, Co, Cr, and Fe) Oxide Catalysts for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 55(16), 4443–4450.
  • 3. Gavrilova N.N., Nazarov V.V. 2015. Analysis of the porous structure based on sorption data. Moscow: D. Mendeleev University of Chemical Technology of Russia. 132. (in Russian).
  • 4. Inglezakis V.J., Zorpas A.A. 2012. Handbook of natural zeolites. Bentham Science Publishers, 705.
  • 5. Ivanenko О., Gomelya N., Panov Ye. 2020. Evaluation of the influence of the catalysts application on the level of emissions of carbon monoxide in the manufacture of electrodes. Technology Audit and Production Reserves, 4/3(54), 4–11.
  • 6. Ivanenko O., Trypolskyi A., Gomelya N., Karvatskii A., Vahin A., Didenko O., Konovalova V., Strizhak P. 2021. Development of a Catalyst for Flue Gas Purification from Carbon Monoxide of Multi-Chamber Furnaces for Baking Electrode Blanks. Journal of Ecological Engineering. 22(1), 174–187.
  • 7. Kharisov, B.I., Dias, H.V.R., Kharissova, O.V. 2019. Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7), 1234–1246.
  • 8. Korablev V.V., Chechevichkin A.V., Boricheva I.B., Samonin V.V. 2017. Тhe structure аnd morphological properties of clinoptilolite modified by manganese dioxide. SPbPU Journal – Physics and Mathematics, 10 (1), 100–111.
  • 9. Кursov S.V. 2015. Carbon Monoxide: Physiological Importance and Toxicology. Emergency medicine, 6 (69), 9–16. (in Russian).
  • 10. Lysenko V.I., Golyanischev M.A., Karpenko E.A., Karamushko I.V. 2017. The true degree of hemic hypoxia in determining the severity of carbon monoxide poisoning: a clinical observation. Emergency Medicine, 6 (85), 76–83. (in Russian).
  • 11. Makarov Yu.A., Tereshkin I.P. 2013. Use of zeolitecontaining rocks for the manufacture of solutions for mineral binders. Almans of Modern Science and Education, 11, 26–33. (in Russian).
  • 12. Obuzdina M.V., Rush Ye.A. 2013. Modern technologies of zeolites using in the construction materials production. Modern technologies System analysis Modeling, 4(40), 193–197. (in Russian).
  • 13. Obuzdina M.V., Rush Ye.A. 2014. Methods of utilization of waste zeolite sorbents in building materials. Modern Technologies System Analysis Modeling, 3(43), 158–165. (in Russian).
  • 14. Panov Ye., Gomelia N., Ivanenko O., Vahin A., Leleka S. 2019. Estimation of the еffect of temperature, the concentration of oxygen and catalysts on the oxidation of the thermoanthracite carbon material. Eastern-European Journal of Enterprise Technologies, 2/6 (98), 43–50.
  • 15. Panov Ye., Gomelia N., Ivanenko O., Vahin A., Leleka S. 2020. Assessment of the Effect of Oxygen and Carbon Dioxide Concentrations on Gas Evolution During Heat Treatment of Thermoanthracite Carbon Material. Journal of Ecological Engineering, 2 (2), 139–149.
  • 16. Patel D.M., Kodgire P., Dwivedi A.H. 2019. Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review. Journal of Cleaner Production, 97.
  • 17. Radovenchik V. M., Ivanenko O. I., Radovenchik Y.V., Krisenko T.V. 2020. Application of ferrite materials in water purification processes. Monograph: O.V. Pshonkivsky, 215 (in Ukrainian).
  • 18. Rahimov R.Z., Rahimova N.R., Stoyanov O.V. 2013. Slag-alkali composite materials for protection against radioactive radiation and immobilization of radioactive waste. Kazan National Research Technological University. Scientific Bulletin of KNRTU, 7, 140–143. (in Russian).
  • 19. Rahimov R.Z., Rahimova N.R., Stoyanov O.V. 2014. Geopolymers. Kazan National Research Technological University. Scientific Bulletin of KNRTU, 23, 189–196. (in Russian).
  • 20. Rakitskaya T.L., Kiose T.A., Vasylechko V.O., Volkova V.Ya., Gryshchouk G.V. 2011. Adsorption-desorption properties of clinoptilolites and the catalytic activity of surface Cu(II)–Pd(II) complexes in the reaction of carbon monoxide oxidation with oxygen. Chemistry of Metals and Alloys, 4 (3–4), 213–218.
  • 21. Statistical Yearbook ‘Environment of Ukraine 2018’. 2019. State Statistics Service of Ukraine: Kyiv, 214.
  • 22. Tarasevich Yu.I., Goncharuk V.V., Polyakov V.E., Krysenko D.A., Ivanova Z.G., Aksenenko E.V., Tryfonova M.Yu. 2012. Efficient technology for the removal of iron and manganese ions from artesian water using clinoptilolite. Journal of Industrial and Engineering Chemistry, 18(4), 1438–1440.
  • 23. Zasidko I.B., Polutrenko M.S., Mandryk O.M. 2017. Use of zeolite for cleaning of natural water and effluents of communal enterprises. Scientific Bulletin of UNFU, 27(5), 63–66. (in Ukrainian).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9e1ed25-ce0d-4f0f-9250-e817183b594f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.