PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bending of beams with consideration of a seventh-order shear deformation theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the paper is a simply-supported prismatic beam with bisymmetrical crosssections under non-uniformly distributed load. The shapes of the cross-sections and the nonuniformly distributed load are described analytically. The individual seventh-order shear deformation theory-hypothesis of the planar beam cross-sections is assumed. Based on the principle of stationary potential energy two differential equations of equilibrium are obtained. The system of the equations is analytically solved, and the shear and deflection coefficients of the beam are derived. Moreover, the shear stress patterns for selected cross-sections are determined and compared with stresses determined by Zhuravsky’s formula. The results of example calculations are presented in tables and figures.
Rocznik
Strony
119--135
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network – Institute of Rail Vehicles “TABOR” Warszawska 181, 61-055 Poznan, Poland
  • Łukasiewicz Research Network – Institute of Rail Vehicles “TABOR” Warszawska 181, 61-055 Poznan, Poland
  • Institute of Mathematics, Poznan University of Technology Piotrowo 3A, 60-965 Poznan, Poland
Bibliografia
  • 1. Gere J.M., Timoshenko S.P., Mechanics of materials, 2nd Ed., PWS-KENT Publishing Company, Boston 1984.
  • 2. Rychter Z., A family of shear-deformation beam theories and a refined Bernoulli-Euler theory, International Journal of Engineering Sciences, 31(4): 559–567, 1993, doi: 10.1016/0020-7225(93)90049-Z.
  • 3. Wang C.M., Reddy J.N., Lee K.H., Shear deformable beams and plates: Relationships with classical solutions, Elsevier, Amsterdam, Lausanne, New York, Shannon, Singapore, Tokyo, 2000.
  • 4. Hutchinson J.R., Shear coefficients for Timoshenko beam theory, ASME, Journal of Applied Mechanics, 68(1): 87–92, 2001, doi: 10.1115/1.1349417.
  • 5. Reddy J.N., Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, 48(11): 1507–1518, 2010, doi: 10.1016/j.ijengsci.2010.09.020.
  • 6. Shi G., Voyiadjis G.Z., A sixth-order theory of shear deformable beams with variational consistent boundary conditions, ASME, Journal of Applied Mechanics, 78(2): 021019, 2011, doi: 10.1115/1.4002594.
  • 7. Beck A.T., da Silva Jr. C.R.A., Timoshenko versus Euler beam theory: Pitfalls of a deterministic approach, Structural Safety, 33(1): 19–25, 2011, doi: 10.1016/j.strusafe.2010.04.006.
  • 8. Kim N-I., Shear deformable doubly- and mono-symmetric composite I-beams, International Journal of Mechanical Sciences, 53(1): 31–41, 2011, doi: 10.1016/j.ijmecsci.2010.10.004.
  • 9. Magnucka-Blandzi E., Dynamic stability and static stress state of a sandwich beam with a metal foam core using three modified Timoshenko hypothesis, Mechanics of Advanced Materials and Structures, 18(2): 147–158, 2011, doi: 10.1080/15376494.2010.496065.
  • 10. Magnucka-Blandzi E., Magnucki K., Wittenbeck L., Mathematical modelling of shearing effect for sandwich beams with sinusoidal corrugated cores, Applied Mathematical Modelling, 39(9): 2796–2808, 2015, doi: 10.1016/j.apm.2014.10.069.
  • 11. Schneider P., Kienzler R., On exact rod/beam/shaft-theories and the coupling among them due to arbitrary material anisotropies, International Journal of Solids and Structures, 56–57: 265–279, 2015, doi: 10.1016/j.ijsolstr.2014.10.022.
  • 12. Senjanovic I., Vladimir N., Neven H., Tomic M., New first order shear deformation beam theory with in-plane shear influence, Engineering Structures, 110: 169–183, 2016, 10.1016/j.engstruct.2015.11.032.
  • 13. Endo M., ‘One-half order shear deformation theory’ as a new naming for the transverse, but not in-plane rotational, shear deformable structural models, International Journal of Mechanical Sciences, 122: 384–391, 2017, doi: 10.1016/j.ijmecsci.2016.10.016.
  • 14. Kienzler R., Schneider P., Second-order linear plate theories: Partial differential equations, stress resultants and displacements, International Journal of Solids and Structures, 115–116: 14–26, 2017, doi: 10.1016/j.ijsolstr.2017.01.004.
  • 15. Adámek V., The limits of Timoshenko beam theory applied to impact problems of layered beams, International Journal of Mechanical Sciences, 145: 128–137, 2018, doi: 10.1016/j.ijmecsci.2018.07.001.
  • 16. Magnucki K., Witkowski D., Lewinski J., Bending and free vibrations of porous beams with symmetrically varying mechanical properties – Shear effect, Mechanics of Advanced Materials and Structures, 27(4): 325–332, 2020, doi: 10.1080/15376494.2018.1472350.
  • 17. Magnucki K, Lewinski J., Analytical modeling of I-beam as a sandwich structure, Engineering Transactions, 66(4): 357–373, 2018, doi: 10.24423/EngTrans.898.20180809.
  • 18. Magnucki K., Bending of symmetrically sandwich beams and I-beams – Analytical study, International Journal of Mechanical Sciences, 150: 411–419, 2019, doi: 10.1016/j.ijmecsci.2018.10.020.
  • 19. Magnucki K., Lewinski J., Cichy R., Bending of beams with bisymmetrical cross sections under non-uniformly distributed load – Analytical and numerical-FEM studies, Archive of Applied Mechanics, 89(10): 2103–2114, 2019, doi: 10.1007/s00419-019-01566-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9ce195c-9be9-46fa-aa7f-c63625756510
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.