PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemiresistive gas sensors based on carbon nanotubes – fabrication and application

Autorzy
Identyfikatory
Warianty tytułu
PL
Chemirezystancyjne czujniki gazów z nanorurek węglowych – wytwarzanie i zastosowanie
Języki publikacji
EN
Abstrakty
EN
Many types of sensors have been invented to identify and quantify chemical contaminants in the gas phase. Sensors based on carbon nanotubes are particularly attractive because of their wide range of applications and potential use in an electronic nose that can be controlled using algorithms of Articificial Inteligence. Sensor functions, fabrication and selected applications are reviewed and discussed with focus on chemiresistors. Drawbacks and challenges in applications are also addressed.
PL
Wiele typów czujników zostało wynalezionych do identyfikacji i oznaczania ilościowego chemicznych zanieczyszczeń gazowych. Czujniki z nanorurek węglowych są szczególnie atrakcyjne ze względu na szerokie możliwości aplikacji i potencjalne zastosowanie w elektronicznym nosie sterowanym algorytmami sztucznej inteligencji. Opisano wykonanie i sposób działania czujników chemirezystancyjnych, a także wybrane zastosowania. Przedyskutowano również wady obecnych rozwiązań oraz możliwości rozwoju.
Twórcy
  • Gdansk University of Technology, Department of Biomedical Engineering
Bibliografia
  • [1] Schnorr J.M., Swager T.M.: Emerging Applications of Carbon Nanotubes. Chemistry of Materials, no. 23, 2011, p. 646–657.
  • [2] Goran J.M., Lyon J.L., Stevenson K.J.: Amperometric Detection of L-Lactate Using Nitrogen-Doped Carbon Nanotubes with Lactate Oxidase. Analytical Chemistry, no. 83, 2011,p. 8123−8129.
  • [3] Singh K., Solanki P.R., Basu T., Malhotra B.D.: Polypyrrole/multi-walled carbon nanotubesbased biosensor for cholesterol estimation. Polymers Advanced Technologies, 2011.
  • [4] Claussen J.C., Hengenius J.B., Wicker M.M., Fisher T.S., Umulis D.M., Porterfield D.M.:Effects of Carbon Nanotube-Tethered Nanosphere Density on Amperometric Biosensing: Simulation and Experiment. The Journal of Physical Chemistry, no. 115, 2011, p. 20896−20904.
  • [5] Balasubramanian K., Burghard M.: Biosensors based on carbon nanotubes. Anal. Bioanal. Chem., no. 385, 2006, p. 452−468.
  • [6] Potyrailo R.A., Surman Ch., Nagraj N., Burns A.: Materials and Transducers Towards Selective Wireless Gas Sensing. Chemical Reviews, no. 111, 2011, p. 7315−7354.
  • [7] Kim E., Hwang G., Gamal El-Din M., Liu Y.: Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. Journal of Membrane Science, no. 394, 2012, p. 37−48.
  • [8] Yan-Li Z., Fraser Stoddart J.: Noncovalent functionalization of Single-Walled Carbon Nanotubes. Accounts of Chemical Research, no. 42, 2009, p. 1161−1171.
  • [9] Zhang T., Mubeen S., Myung N., Deshusses M.: Recent progress in carbon nanotube-based gas sensors. Nanotechnology, vol. 19, 2008, p. 332001.
  • [10] Zhao Q., Gan Z., Zhuang Q., Electrochemical Sensors Based on Carbon Nanotubes. Electroanalysis, no. 14, 2002, p.1609−1613.
  • [11] Zhang W., Zhu Z.Y., Wang F., Wang T.T., Sun L.T., Wang Z.X.: Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology, vol. 15, 2004, p. 936−939.
  • [12] Wei B.Q., Vajtai R., Ajayan P.M.: Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, vol. 79, no. 8, 2001, p. 1172−1174.
  • [13] Robinson J.A., Snow E,S., Perkins F.K.: Improved chemical detection using single-walled carbon nanotube network capacitors, Sensors & Actuators: A. Physical, no. 135, 2007, p. 309−314.
  • [14] Penza M., Cassano G., Aversa P., Cusano A., Cutolo A., Giordano M., Nicolais L: Carbon nanotube acoustic and optical sensors for volatile organic compound detection, Nanotechnology, no. 16, 2005, p. 2536–2547.
  • [15] Ong K.G., Zeng K., Grimes C.A.: A wireless, passive carbon nanotube-based gas sensor. IEE Sensors, no. 2, 2002, 82−88.
  • [16] Modi A., Koratkar N., Lass E., Wei B., Ajayan M.: Miniaturized gas ionization sensors using carbon nanotubes. Nature, no. 424, 2003, p. 171−174.
  • [17] Huczko A.: Synthesis of aligned carbon nanotubes. Applied Physics A, no. 74, 2002, 617−638.
  • [18] Hou H., Schaper A.K., Zeng J., Weller F., Greiner A.: Large-Scale Synthesis of Aligned Carbon Nanotubes Using FeCl3 as Floating Catalyst Precursor. Chem. Mater., no. 15, 2003, p. 580−585.
  • [19] Dai H., Kong J., Zhou C., Franklin N., Tombler T., Cassell A., Fan S., Chapline M.: Controlled Chemical Routes to Nanotube Architectures. Physics and Devices, J. Phys. Chem., no. 103, 1999, p. 11246−11255.
  • [20] Frankili N.R., Wang Q., Tombler W., Javey A., Shim M., Dai H.: Integration of suspended carbon nanotubes arrays into electronic devices and electromechanical systems. Applied Physicis Letters, no. 81, 2002, p. 913−915.
  • [21] Li Y., Kim W., Zhang Y., Rolandi M., Wang D., Dai H.: Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes. J. Phys. Chem. B, no. 105, 2001, p. 11424−11431.
  • [22] Yang H.S., Zhang L., Dong X.H., Zhu J., Nelson B.J., Zhang X.B.: Precise control of the number of the walls formed during carbon nanotubes growth using chemical vapor deposition. Nanotechnology, no. 23, 2012, p. 65604−65610.
  • [23] Penza M., Rossi R., Alvisi A., Signore M.A., Cassano G., Dimaio D., Pentassuglia R., Piscopiello E., Serra E., Falconieri M.: Characterization of metal-modified and vertically aligned carbon nanotubes films for functionally enhanced gas sensor applications. Thin Solid Films, no. 517, 2009, p. 6211−6216.
  • [24] Tasis D., Tagmatarchis N., Bianco A., Prato M.: Chemistry of Carbon Nanotubes. Chemical Reviews, no. 106, 2006, p. 1105−1136.
  • [25] Karousis N., Tagmatarchis N., Tasis D.: Current Progress on the Chemical Modification of Carbon Nanotubes. Chemical Reviews, no. 110, 2010, p. 5366−5397.
  • [26] Hamon M.A., Hu H., Bhowmik P., Niyogi S., Zhao B., Itkis M.E., Haddon R.C.: End-group and defect analysis of soluble single-walled carbon nanotubes. Chemical Physics Letter, no. 347, 2001, p. 8−12.
  • [27] Fu D., Lim H., Shi Y., Dong X., Mhaisalkar S.G., Chen Y., Moochhala S., Li L.J.: Differentiation of gas molecules using flexible and all-carbon nanotube devices. Journal of Physical Chemistry, no. 112, 2008, p. 650−653.
  • [28] Rance G.A., Marsh D.H., Bourne S.J., Reade T.J., Khlobystov A.N.: Van der Waals Interactions between Nanotubes and Nanoparticles for Controlled Assembly of Composite Nanostructures. Acs Nano, no. 4, 2010, p. 4920−4928.
  • [29] Janata J., Josowicz M.: Conducting polymers in electronic chemical sensors. Nat Mater, no. 2, 2003, p. 19−24.
  • [30] An K.H., Jeong S.Y., Hwang H.R., Lee Y.H.: Enhanced Sensitivity of a Gas Sensor Incorporating Single-Walled Carbon Nanotube-Polypyrrole Nanocomposites. Advanced Materials, no. 16, 2004, p. 1005−1009.
  • [31] Penza M, Cassano G, Rossi R, Alvisi M, Rizzo A, Signore M.A., Dikonimos T., Serra E., Giorgi R.: Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface
  • functionalized with noble metal (Au, Pt) nanoclusters. Appl. Phys. Lett., no. 90, 2007, p. 171231−3.
  • [32] Sun Y., Wang H.H.: Electro-deposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Applied Physics Letter, no. 90, 2007, p. 213107.
  • [33] Zanolli Z., Leghrib R., Felten A., Pireaux J.J., Llobet E., Charlier J.C.: Gas Sensing with Au-Decorated Carbon Nanotubes. Acs Nano, no. 5, 2011, p. 4592-4559.
  • [34] Young P., Lu Y.J., Terrill R., Li J.: High-Sensitivity NO2 Detection with Carbon Nanotube–Gold Nanoparticle Composite Films. Journal of Nanoscence and Nanotechnology, no. 5, 2005, p. 1509−1513.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9cd67ab-9bb2-484c-a9f7-637544e0f0d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.