PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of dimensional proportions of cylindrical explosive on resulting blast wave

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Explosives are broadly used today in many applications, both civilian and military. Many experiments involving explosives use either ball or cylinder charges. However, there can be raised a question whether an exact shape influences the resulting blast wave, and, additionally, if the length to diameter ratio of the cylinder influences the wave. To answer the question, numerical analysis was conducted. A 3D model of the charge was constructed in LS-Prepost software and calculated with use of an explicit FEM method in LS-DYNA software. To determine the change of character of the blast wave, the dimensions of the charge change, whereas the mass and distance from the centre of the charge are constant. Several length to diameter ratios was tested, starting from 0.25, to 2, in 0.25 increments. Two explosives, HMX and TNT, were used. As expected, the resulting Blast wave was different in each case, with 100% difference in pressure values between 0.25 and 2 L to D ratios, especially along the length axis of the cylinder. The results show that the exact diameters of the charges need to be taken into consideration while determining a type of charge to be used as well as determining the goal to be achieved during a particular conducted experiment.
Twórcy
autor
  • Military University of Technology Faculty of Mechanical Engineering Kaliskiego Street 2, 01-476 Warsaw, Poland tel.: +48 261 839000, fax: +48 261 839901
autor
  • Military University of Technology Faculty of Mechanical Engineering Kaliskiego Street 2, 01-476 Warsaw, Poland tel.: +48 261 839000, fax: +48 261 839901
  • Military University of Technology Faculty of Mechanical Engineering Kaliskiego Street 2, 01-476 Warsaw, Poland tel.: +48 261 839000, fax: +48 261 839901
Bibliografia
  • [1] Bdzil, J.B., Stewart, D.S., Jackson, T.L., Program burn algorithms based on detonation shock dynamics: discrete approximations of detonation flows with discontinuous front models, Journal of Computational Physics, Vol. 174, pp. 870-902, 2001.
  • [2] CONWEP: Conventional Weapons Effects Program, US Army Waterways Experimental Station, Vicksburg 1991.
  • [3] Henrych, J., The Dynamic of Explosion and its Use. Academia, Prague 1979.
  • [4] Hallquist, J. O., LS-DYNA Theory Manual, Livermore Software Technology Corporation, Livermore, CA 2005.
  • [5] Jach, K., Panowicz, R. i in., Komputerowe modelowanie dynamicznych oddziaływań metodą punktów swobodnych, PWN, Warszawa 2001.
  • [6] Kingery, C.N., Bulmash, G., Air blast parameters from TNT spherical air burst and hemispherical surface burst, BRT Technical Report ARBRL-TR-02555, Aberdeen, US Army Armament Research and Development Center, Ballistic Research Laboratory, 1984.
  • [7] Von Neumann, J., The point source solution, National Defence Research Committee, Div. B Report AM-9, 1941.
  • [8] Panowicz, R., Barnat, W., Niezgoda, T., Szymańczyk, L., Grzymkowski, J., Numerical-experimental investigation of squared-based metal pyramids loaded with blast wave from a small explosives charge, Acta Mechanica et Automatica, Vol. 6, No. 1, 2012.
  • [9] Panowicz, R., Konarzewski, M., Borkowski, J., Milewski, E., Selected aspects of modelling a phenomena occurring with very large strain rates on the example of the shaped charge jet stream forming process and explosive formed projectiles, Journal of KONES, Vol. 22, No. 3, pp. 187-192, 2015.
  • [10] Panowicz, R., Konarzewski M., Borkowski, J., Milewski, E., Analysis of the influence of the finite elements mesh density on the determined shaped charge jet parameters, Journal of KONES, Vol. 22, No. 3, pp. 329-336, 2015.
  • [11] Sadovsky, M.A., Mechanical effects of air shockwaves from explosions according to experiments, in: Geophysics and Physics of Explosion (ed. M.A. Sadovsky), Nauka Press, Moscow 2004.
  • [12] Sedov, L.I., Propagation of intense (strong) blast waves, Prikl. Mat. Mek., Vol. 10, pp. 241-250, 1946.
  • [13] Syeda, Z.I., Mohameda, O.A., Rahmanb, S.A., Non-linear finite element analysis of offshore stainless steel blast wall under high impulsive pressure loads, Procedia Engineering,Vol. 145, pp. 1275-1282, 2016.
  • [14] Staniukowicz, K.P., Fizyka wzrywa, Moscow 1975.
  • [15] Taylor J.L., The formation of a blast wave by a very intense explosion I, Proc. Roy. Soc., Ser. A, Vol. 201, pp. 159-174, 1950.
  • [16] Włodarczyk, E., Wstęp do mechaniki wybuchu, PWN, Warszawa 1994.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9cc105f-3a58-4cc4-ae6f-cc8b3a8beaa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.