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Recognition of fluctuating patterns: from

informatics to dynamic structure

of two-dimensional liquids

1. Local structure of two-dimensional liquids

Standard methods of pattern recognition, generalized onto the case of a system
of fluctuating material points representing atoms or molecules in computer-
simulated liquids at non-zero temperatures, has established the concept of locally
solid-like ordered instantaneous structure of liquids in two dimensions [13].
Probabilistic method of structural invariants [6–8,13], briefly presented in the
next Section, was applied to Lennard-Jones liquid [8], hard discs liquid [9] and
liquid with quantum degrees of freedom [3]. In each case the system close
to freezing line (we do not discuss here the challenging question of the order
of phase transition – see, e.g. Refs. [5, 18]) developed approximately 50% of
solid-like atoms (see below) which together with their 6 nearest neighbours
form a part of regular triangular lattice in 2D. Moreover, the SLA atoms show a
tendency to form large clusters. The conjecture that the local structure is a slow-
relaxing mode in low-temperature equilibrium liquids opens new possibilities
in statistical mechanics treatment of classical liquids [15].
Dynamic features of local solid-like structure in 2D liquids were also studied

using the same formalism and revealed a non-exponential relaxation of various
correlation functions in the two-phase interval [14]. Quite recently, this approach
enriched by topological characterization of neighbouring relations revealed that
the 2D LJ liquid becomes a complex liquid in a narrow strip of thermodynamic
states close to the melting line, characterized by a super-Arrhenius increase
of relaxation times, stretched-exponential decay of correlations in time, and a
power-law distribution of waiting times for changes in the local order [12].
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Various structure-based physical processes are related to various spatial scales
characterizing the structure. The time of life of those structures in 2D liquids
are dependent on the spatial scale. It seems plausible that the time evolution
of large clusters of SLA atoms may be governed by very different time scales
because of a solid-like environment of a given atom [12]. Those structures or
their topological counterparts [12] are natural candidates for long-time structural
hydrodynamic modes in liquids, which may manifest themselves in various
physical phenomena related to short-time thermodynamics [15].
The aim of the paper is to present first results on time evolution of SLA

clusters in 2D LJ liquid.
The paper is organized as follows. Probabilistic pattern recognition approach

is briefly presented in the next Section. Some details concerning the molecular
dynamics simulation are given in section 3. In Section 4.1 the algorithm for the
search of SLA clusters is briefly discussed. Section 4.2 deals with a challenging
problem of the definition of the “identity” of a cluster during the time evolu-
tion. In section 4.3 the corresponding MD results are shown. Conclusions are
presented is section 5.

2. Fluctuating pattern recognition: probabilistic method

of structural invariants

2.1. Pattern recognition: object and feature spaces

The canonical pattern recognition task is to classify a given object Γ using
as a reference a set of patterns Γi, i = 1, . . . , N . To this end one introduces a
merit function which plays a role of a metric in the space of objects and finds
the pattern Γi which displays maximal similarity with object Γ.
As a rule, the object has a complicated geometrical structure represented by a

set of parameters which span the so-called feature space. The metric becomes a
function in feature space and the classification of an unknown object acquires a
well-defined mathematical meaning.
The situation gets more complicated when the object Γ can, a priori, represent

a kind of “mixture” of basic patterns Γi. This is, e.g., the case when the object is a
system of geometric points which dynamically undergo fluctuations. In this case
the basic patterns Γi are fluctuating – and not static – patterns. Moreover, the
fluctuations of the pattern should result from the same ensemble of fluctuations
as the classified object does. All this makes the recognition procedure more
complicated and inevitably increases the degree of arbitrariness, already present
in the canonical formulation of the problem due to the arbitrariness of the choice
of merit function.
Those difficulties are present in the case of computer-simulated liquids in

thermal equilibrium, where its constituent atoms, molecules etc. are represented
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by geometrical points. In the next Section we present a classification scheme for
local structures based on a probabilistic approach.

2.2. How to differentiate between fluctuating patterns: structural
invariants

Local structure hypothesis [13] states that the local structure of simple liquids
in 2D resembles that of a regular triangular solid. Thus, an object of main
interest is a two-dimensional 7-atom cluster. Its structure, which is invariant
with respect to 2D translations and rotations, depends on 11 parameters which
span the 11-dimensional feature space. Instead of using the whole set of 11
parameters, we take into account only one which describes the orientational
relations between the atoms in this cluster. Namely, local order in a 2D system
in the neighborhood of an atom located at the point ~r is described by 2D local
version of bond-order parameter of Nelson et al. [8, 10, 17]:

Q6m(~r) =
1

N0

N0
∑

i=1

Y6m(π/2, φi), (1)

where Y6m(θ, φ) (m = −6, . . . , 6) denotes the spherical harmonic function, the
sum is taken over the N0 nearest-neighbors of the atom located at the point
~r and the pair of polar and azimuthal angles, (θi, φi), describes the direction
between the central atom ~r and its i-th nearest neighbor. The structural invariant
Q(~r) for (N0 + 1)-atom cluster with central atom at ~r is defined as [8, 17]:

Q2
6(~r) =

4π

13

6
∑

m=−6

|Q6m(~r)|
2. (2)

Within the probabilistic formalism of structural invariants the local solid-like
component in a 2D liquid is calculated using the decomposition of a proba-
bility density function ρ(Q6) (PDF) of invariant Q6, calculated from computer
simulations, into fluctuating patterns of structure ρi(Q6), i = 1, . . . , N . In other
words, the feature space is spanned by normalized probability density functions.
The reliability of this decomposition is given in terms of standard mathematical
statistics parameters like, e.g., significance level α calculated from χ2 test [16].
Very small values of α (of order of 10−6 and smaller) indicate that the decompo-
sition is statistically not reliable [8]. The choice of patterns Γi and of ensembles
of fluctuations of their constituent atoms is dictated by the physical picture of
fluctuating local structure in solids and liquids in 2D. In the case of liquids,
satisfactory results were obtained using only two patterns of structure: Γ6 and
Γ5, in which the atoms fluctuate independently, with gaussian distributions,
around their positions in a static pattern. The first of the static patterns is a
7-atom 2D hexagon (part of 2D triangular lattice) and the second – a 7-atom
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cluster of atoms close to a dislocation in 2D triangular lattice. They represent,
respectively, solid-like and non solid-like local order. The decomposition takes
form:

ρ(Q6; T
∗, ρ∗) = c6(T

∗, ρ∗) ρ6(Q6, ξ6) + c5(T
∗, ρ∗) ρ5(Q6, ξ5), (3)

where T ∗ and ρ∗ stand for, respectively, reduced temperature and reduced
density, see Section 3. ξ5 and ξ6 denote, respectively, the r.m.s displacement
of the atoms undergoing gaussian fluctuations in patterns Γ5 and Γ6. The
distributions are normalized and thus c5 + c6 = 1. The parameters c6 and c5
give, respectively, a concentration of solid-like and non solid-like clusters at
given thermodynamic conditions. In the two-phase region an important new
effect appears: at the liquidus line a dramatic crossover of an ensemble of
fluctuation takes place, from gaussian to a non-gaussian ensemble [5]. This
new non-gaussian ensemble has to be used for modelling the fluctuations of
the atoms of patterns in order to produce statistically reliable results of the
decomposition (3). [4]
Fig.1 summarizes the most important features of the fluctuating patterns

discussed above. Dotted and dashed lines correspond to typical non solid-like
and solid-like patterns close to the liquidus line, calculated using gaussian
fluctuations with ξ5 ≃ 0.30 and ξ6 ≃ 0.15. Solid line shows the PDF calculated
from a 2D solid at T ∗ = 0.7, ρ∗ = 0.9, i.e. close to the solidus line (ρ∗ ≃ 0.88 [4]).
The r.m.s. fluctuation is approximately equal to 0.15, as in the case of gaussian
fluctuations of hexagonal pattern. Clearly, the two PDFs for local solid-like
structure are different, which proves that the ensembles differ from each other.

On the other hand, all PDFs intersect approximately at the same value of Q
(0)
6 .
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Fig. 1. PDFs for patterns: non solid-like (dotted), gaussian hexagonal (dashed) and
non-gaussian hexagonal (solid), see text for more details.
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2.3. Maximal Probability Decision Rule

The method presented in the last Section has a “global” character and does
not provide any means for a discrimination of a single cluster as a solid- or
non solid-like. To this end we use the Maximum Probability Decision Rule
(MPDR) [2, 8]. It states that the instantaneous cluster belongs to this fluctuating
pattern for which the corresponding PDF has a larger value. In our case, 7-atom
cluster is recognized as solid-like when the invariant Q6 takes large values:

Q6 > Q
(0)
6 . (4)

Obviously, the point Q
(0)
6 corresponds to the intersection of PDFs: ρ6(Q

(0)
6 , ξ6) =

ρ5(Q
(0)
6 , ξ5). In the liquid close to the liquidus line Q

(0)
6 = 0.555−−0.56. Small

variations of this value lead to small variations in the estimated concentrations
of solid-like clusters.
An important question appears: what is the relation between the concen-

trations c6 calculated from the decomposition, formula (3), and from Q
(0)
6 –

criterion, formula (4). Close to the liquidus line the two distributions are well
separated, the numbers of clusters which are erroneously classified according

to the Q
(0)
6 – criterion are small and, what is more important, approximately

equal for both structures. For this reason the concentrations of local solid-like
structures calculated using both approaches are approximately equal.
In what follows we refer to the central atoms of solid-like clusters as solid-like

atoms (SLA); the central atoms of remaining clusters are referred to as liquid-like
atoms (LLA).
The MPDR-based classification has a probabilistic character. The total prob-

ability of a false classification: a fluctuation of pattern Γ5 as a fluctuation of
pattern Γ6 and vice versa is given by the overlap of the corresponding PDFs:

E(ξ5, ξ6) =

∫

min [ρ5(Q, ξ5), ρ6(Q, ξ6)] dQ. (5)

E(ξ5, ξ6) defines a measure of structural identity of two fluctuating patterns and
introduces the metric in the feature space [2]. When the overlap is small then
the probability of a false classification is also small and fluctuating structures
preserve their structural identity. With increasing fluctuation level the overlap of
the PDFs increases and the structural identity of fluctuating patterns is gradually
lost.

3. Molecular Dynamics simulation

We have simulated a 2D system of 2500 atoms interacting via Lennard – Jones
potential vLJ(r)

vLJ(r) = 4 ǫ

[

(σ

r

)12
−

(σ

r

)6
]

, (6)
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at T ∗ ≡ kBT/ǫ = 0.7. Here kB stands for Boltzmann constant and T for
temperature. A standard NVT molecular dynamics (MD) method [1] with
velocity Verlet algorithm was used. The time step was ∆t = 0.0064 τ0. In the
case of argon ∆t = 2 × 10−15s. Runs of various lengths were used; the maximal
time interval from which data were sampled was 2× 10−9 s ≃ 1800τLJ, where
τLJ denotes the period of oscillations in a harmonic regime of LJ potential. The
equilibrium characteristics were sampled after 5× 104 equilibration steps. The
liquidus line was located via local structure analysis [5] at reduced density ρ∗ ≡
ρσ2 ≈ 0.82 (ρ denotes density). The critical temperature reads approximately
T ∗ ≈ 0.55. More details can be found in Ref. [5].

4. Evolution of clusters of SLA atoms in time

4.1. Search for SLA clusters

Below, we present shortly an algorithm for an isolation of a cluster of SLA
atoms in an instantaneous configuration. By the definition, two SLA atoms
belong to the same cluster it they are metrical nearest neighbours (nn). We
point out that in low-density systems, e.g. gases, it is possible than atom 1 is
a nn of atom 2 while atom 2 is not a nn of atom 1. The possibility of such an
event in dense systems is very small.
The search for SLA clusters is done as follows. For each atom its 6 metrically

defined neighbours are found; for the resulting 7-atom cluster the invariant Q6

is calculated. Recall that if Q6 > 0.555 then the central atom is classified as SLA.
In this way all SLA atoms are found. As the next step we start from a chosen
SLA atom which constitutes a one-atom cluster. Then, its 6 metrically defined
neighbours are found and those of them which have Q6 > 0.555 are the new
members of the cluster. In the next step a sweep over all the members of the
current cluster is made to find their SLA neighbours in the same way as for the
initial atom. The search stops when in a sweep no new members are found.
A search of clusters can be conveniently implemented using the concept of a
binary tree search.

4.2. SLA cluster-parent and SLA cluster-child relation

Let us briefly formulate the problem. We have two consecutive configurations
K and K ′, separated by a time interval Tn = n∆t. In the former one we pick
up a cluster S of SLA atoms. The question is: how to find the SLA cluster S′ in
K ′ for which S is an ancestor? Once this relation is defined one can study time
evolution and time scales related to SLA clusters.
In this paper we use the following definition. Some of the atoms from cluster

S continue to be SLA in configuration K ′ and, as such, belong to various SLA
clusters S′i, i = 1, . . . in configuration K ′. By the definition, S′ is this of clusters
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S′i which contains the largest number of atoms from cluster S in K. The atoms
of S may dominate in S′, i.e., constitute more than 50% its atoms. We introduce
a binary variable P which determines the degree of “parental” similarity of
S′ with S: if the atoms from S dominate in S′ then PS,S′ = 1, else PS,S′ = 0.
After the cluster S′ was identified, the above procedure is continued with S′

acting as the parental cluster. As long as the product Π =
∏

i PSi,S
′

i
is non-zero,

the current cluster Si traces its origin back to cluster S1 through a sequence
of clusters Si, Si−1, . . . , S1. We use the notation Si+1 ≡ S′i. In liquids after
elapsed time t0 Π becomes zero: Π(t0) = 0. Time t0 has the meaning of the
First-Passage-Time and is a random variable, defined by moments (if they exist)
and probability density function. The statistics of time t0, which depends on the
size of a parental cluster, provides an information about one of time scales for
clusters of SLA atoms. After elapsed time t0 the subsequent clusters trace their
origin back to the cluster Si(t0) and, finally, after some time t1, the parental
continuity is again lost: Π(t1) = 0. The binary time series B(t) = 1 for t = ti,
B(t) = 0 for t 6= ti, provides the information about this time scale in a different
way.
It should be stressed that the results are dependent on the interval Tn = n∆t

separating the configurations. Thus, it is necessary to analyze the time evolution
using the shortest time T1 and then to use larger intervals. The use of the
later introduces an element of an averaging over time which can result in an
artificially induced chaotic behaviour of the time series. We point out that if
this scenario occurs, than the crossover from a non-chaotic to chaotic behaviour
yields another time scale for a liquid.

4.3. Results

In this Section we present first results on time evolution of largest SLA
clusters at reduced density ρ∗ = 0.79. The data were sampled from last 2000
configurations separated from each other by T1 ≡ ∆t; those configurations span
the time interval 4 × 10−12s ≃ 3 τLJ.

Fig. 2. ρ∗ = 0.79: 951 SLA atoms (left) and largest cluster (109 SLA) (right).
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Fig. 3. ρ∗ = 0.79 : N(t) (left) and Π(t) (right) for an initial cluster from Fig. 2 (right).
Horizontal axis: time counted in units of ∆t.

Fig. 4. ρ∗ = 0.79: cluster at t=127 (left) and t=128 (right)

The 951 SLA atoms in the first of 2000 configurations are shown in Fig. 2 (left).
The concentration of SLA reads approximately 0.38. The largest cluster in this
configuration consists of 109 SLA (Fig. 2 (right)). The number of SLA atoms
N(t) in its clusters-descendants oscillates strongly as a function of time, from
few tens to four hundred atoms, see Fig. 3 (left). In the studied period of time
the cluster lost a few times the relation to its ancestor (in the sense discussed
above), see Fig. 3 (right) which shows the plot of the function Π(t) – its zeros t0
indicate the corresponding moments of time. We have found that the spikes
in N(t) often correspond to times t0. For example, the first spike appears at
t0 = 128∆t. The cluster under consideration consists at time t = 127∆t of 44
SLA, while N(128) = 284. A closer inspection of this cluster (Fig. 4) reveals a
typical mechanism of the lost of memory about the parental cluster. Namely,
because of the very specific spatial distribution of SLA atoms (Fig. 2 (left)), in
particular of an abundance of narrow bridge-like structure joining more compact
parts of a cluster, appearance or disappearance of a single SLA within a bridge
may easily lead to a fission or fusion process. This is exactly what happens in
Fig. 4, where a single new SLA atom connects two separate large clusters. To
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avoid misunderstanding we point out that periodic boundary conditions were
used and the seemingly separate clusters actually form a single one. Similar
mechanism occurs at time t0 = 911∆t, where a cluster with N(910) = 128
undergoes a fusion with a larger one, giving rise to a N(911) = 362.
Those observations explain an origin of strongly developed fluctuations of

N(t). They are due rather to one-atom processes caused by a formal restrictive
definition of a SLA state than to real physical processes. As the result, the
dynamics of large SLA cluster has a short time character and does not pro-
vide quantitative measures of physically meaningful time scales exceeding the
time τLJ.

5. Conclusions

We have used the probabilistic formalism of structural invariants to characterize
temporal evolution of clusters of solid-like atoms in two-dimensional Lennard-
Jones liquid. We have proposed a method to identify the child SLA cluster
originating from a parent SLA cluster in a preceding configuration. We have
found that the time interval in which the current cluster preserves memory
about its ancestors is small, about the oscillation time τLJ in a harmonic regime
of LJ potential. We have shown that it is the result of easily breakable one
dimensional bridge-like connections between parts of the cluster.
Our study is related to metrical features of clusters. We believe that one

remedy for avoiding the artificial effects discussed above is to use dressed
clusters [11]. In this context, a topological approach is also of an interest,
because the topological characterization of local order yields much longer time
scales [12]. Study of those topics goes beyond the scope of this paper.
The paper was completed during the stay of one of us (ACM) as invited

professor at ENS Cachan; warm hospitality is gratefully acknowledged. The
work of AZP on this project was supported by the Nonequilibrium Energy
Research Center (NERC) which is an Energy Frontier Research Center funded by
the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences,
under Award Number DE-SC0000989.

Summary

Recognition of fluctuating patterns: from informatics to dynamic structure of
two-dimensional liquids

We use the probabilistic formalism of structural invariants for structure recognition
of fluctuating patterns consisting of geometrical points to discuss some concepts related
to time evolution of large clusters of solid-like atoms (SLA) in two-dimensional (2D)
Lennard-Jones (LJ) liquid simulated using standard NVT molecular dynamics method.
The relation between parental and child SLA clusters in consecutive configurations is
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proposed and quantified. The time of life of a cluster is close to the oscillation time τLJ
in a harmonic regime of LJ potential. This small value is due to a fractal-like spatial
distribution of SLA atoms in a cluster which results in an appearance of easily breakable
one dimensional bridge-like connections between more compact parts of the cluster.

Streszczenie

Rozpoznawanie fluktuujących wzorców struktury: od informatyki do dyna-
micznej struktury dwuwymiarowych cieczy.

Używając probabilistycznego formalizmu strukturalnych inwariantów do rozpozna-
wania struktury fluktuujących wzorców utworzonych z układu punktów materialnych,
badane są wybrane aspekty związane z ewolucją w czasie dużych klasterów składają-
cych się z atomów typu SLA w dwuwymiarowej (2D) cieczy Lennarda-Jonesa (LJ),
symulowanej za pomocą standardowej metody dynamiki molekularnej w zespole NVT.
Zaproponowano i skwantyfikowano relację pomiędzy klasterami SLA i ich następcami –
klasterami SLA w kolejnych konfiguracjach. Czas życia klastera jest bliski czasowi
drgań w harmonicznym potencjale przybliżającym potencjał LJ. Ta mała wartość wynika
z przypominającego fraktalny rozkładu przestrzennego atomów SLA w klasterze, w któ-
rym pojawiają się łatwo ulegające zniszczeniu wąskie połączenia pomiędzy zwartymi
częściami klastera.
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