Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cu/Sn–Pb multilayer composite was fabricated by accumulative roll bonding (ARB) technique and its structural, mechanical, and corrosion properties were studied. Microstructural evolution revealed that distribution of Cu and Sn–Pb layers improves by increasing ARB passes and multilayer composite with wavy microstructure and formation of Cu6Sn5 intermetallic compound by solid-state reactions was achieved, while tensile test depicted that tensile strength and fracture strain decrease after the first ARB pass. However, the strength of the multilayered composite at the first pass (about 300 MPa) is much higher than that of the pure Cu (about 200 MPa). Electrochemical tests (potentiodynamic polarization) were conducted in 3.5 wt.% NaCl and boiler feed water (BFW) on the surface and cross-sectional areas. Open circuit potential (OCP) of the composite was lower than that of the pure and ARBed Cu (pure Cu was fabricated using ARB process after seven passes). The results demonstrated that corrosion resistance on the surface and cross-sectional area decreased with increasing ARB passes, indicating a growing susceptibility to corrosion on both surfaces. Besides, with increasing ARB passes a more uniform distribution of Sn–Pb within Cu matrix was realized and due to the conversion of galvanic coupling to micro-galvanic coupling corrosion occurs more uniformly.
Czasopismo
Rocznik
Tom
Strony
art. no. e170, 2024
Opis fizyczny
Bibliogr. 65 poz., rys., wykr.
Twórcy
autor
- Department of Materials Science and Engineering, Shiraz University of Technology, Modarres Blvd., Shiraz 71557-13876, Iran
autor
- Department of Materials Science and Engineering, Shiraz University of Technology, Modarres Blvd., Shiraz 71557-13876, Iran
autor
- Department of Materials Engineering, Yasouj University, Student Street, Yasouj 75918-74934, Iran
autor
- Department of Materials Science, Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Av., Chelyabinsk 454080, Russia
Bibliografia
- 1. Harichandran R, Selvakumar N. Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Arch Civ Mech Eng. 2016;16:147–58. https://doi.org/10.1016/j.acme.2015.07.001.
- 2. Wang L, Du Q, Li C, Cui X, Zhao X, Yu H. Enhanced mechanical properties of lamellar Cu/Al composites processed via high-temperature accumulative roll bonding. Trans Nonferrous Met Soc China. 2019;29:1621–30. https://doi.org/10.1016/S1003-6326(19)65069-7.
- 3. Solecka M, Mróz S, Petrzak P, Mania I, Szota P, Stefanik A, Garstka T, Paul H. Microstructure-related properties of explo-sively welded multilayer Ti/Al composites after rolling and annealing. Arch Civ Mech Eng. 2022;23:39. https://doi.org/10.1007/s43452-022-00577-4.
- 4. Sauvage X, Murashkin MY, Straumal BB, Bobruk EV, Valiev RZ. Ultrafine grained structures resulting from SPD-induced phase transformation in Al–Zn Alloys. Adv Eng Mater. 2015;17:1821–7.https://doi.org/10.1002/adem.201500151.
- 5. Edalati K, Bachmaier A, Zhu X. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater Res Lett. 2022;10:163–256. https://doi.org/10.1080/21663831.2022.2029779.
- 6. Jabłońska MB, Kowalczyk K, Tkocz M, Chulist R, Rodak K, Bednarczyk I, Cichański A. The effect of severe plastic deformationon the IF steel properties, evolution of structure and crystallo-graphic texture after dual rolls equal channel extrusion deformation. Arch Civ Mech Eng. 2021;21:153. https://doi.org/10.1007/s43452-021-00303-6.
- 7. Bednarczyk I, Dobkowska A, Hilšer O, Rusz S, Pastrňák M, ČadaR, Jabłońska M, Tkocz M, Kowalczyk K, Palgan D, Necas D, Mizera J. Influence of temperature and number of passes during twist channel angular pressing (TCAP) on the microstructural, mechanical, and corrosion properties of Mg–4Li–Ca. Arch Civ Mech Eng.2024;24:89. https://doi.org/10.1007/s43452-024-00903-y.
- 8. Pashangeh S, Alizadeh M, Amini R. Structural and corrosion behavior investigation of novel nano-quasicrystalline Al–Cr–Ferein forced Al-matrix composites produced by ARB process. J Alloys Compd. 2022;890: 161774. https://doi.org/10.1016/j.jallcom.2021.161774.
- 9. Zhan MY, Li YY, Chen WP, Chen WD. Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by accumulative roll-bonding. J Mater Sci.2007;42:9256–61. https://doi.org/10.1007/s10853-007-1885-2.
- 10. Alizadeh M, Vahdatinejad F, Pashangeh S. Feasibility study of producing Al–5Zn–1 Mg alloy by accumulative roll bonding process and subsequent heat treatment. Eng Fail Anal. 2023;143:106927. https://doi.org/10.1016/j.engfailanal.2022.106927.
- 11. Kalantarrashidi N, Alizadeh M, Pashangeh S. Consideration onzinc content on the microstructure, mechanical, and corrosion evolution of aluminum/zinc composites fabricated by CARB process. J Mater Res Technol. 2022;19:1805–20. https://doi.org/10.1016/j.jmrt.2022.05.133.
- 12. Gharechomaghlu M, Mirzadeh H. Toward understanding theorigins of poor ductility in a metal-matrix composite processed by accumulative roll bonding (ARB). Arch Civ Mech Eng.2019;19:958–66. https://doi.org/10.1016/j.acme.2019.04.006.
- 13. Alizadeh M, Salahinejad E. A comparative study on metal–matrix composites fabricated by conventional and cross accumulative roll-bonding processes. J Alloys Compd. 2015;620:180–4. https://doi.org/10.1016/j.jallcom.2014.08.249.
- 14. Alizadeh M, Paydar MH. Fabrication of Al/SiCP composite strips by repeated roll-bonding (RRB) process. J Alloys Compd. 2009;477:811–6.
- 15. Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk material_development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–83.
- 16. Alizadeh M, Ghaffari M, Amini R. Properties of high specific strength Al-4 wt.% Al2O3/B4C nano-composite produced by accumulative roll bonding process. Mater Des. 2013;50:427–32.
- 17. Yazdani A, Salahinejad E. Evolution of reinforcement distribution in Al–B4C composites during accumulative roll bonding. Mater Des. 2011;32:3137–42. https://doi.org/10.1016/j.matdes.2011.02.063.
- 18. Hosseini M, Yazdani A, Danesh-Manesh H. Al 5083/SiCp composites produced by continual annealing and roll-bonding. Mater Sci Eng A. 2013;585:415–21. https:// doi. org/ 10. 1016/j. msea.2013.07.077.
- 19. Ghalandari L, Moshksar MM. High-strength and high-conductive Cu/Ag multilayer produced by ARB. J Alloys Compd. 2010;506:172–8. https://doi.org/10.1016/j.jallcom.2010.06.172.
- 20. Eizadjou M, Talachi AK, Manesh HD, Shahabi HS, Janghorban K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos Sci Technol. 2008;68:2003–9.
- 21. Carpenter JS, Vogel SC, Le Donne JE, Hammon DL, Beyerlein IJ, Mara NA. Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 2012;60:1576–86. https://doi.org/10.1016/j.actamat.2011.11.045.
- 22. Tayyebi M, Eghbali B. Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding. Mater Sci Eng A. 2013;559:759–64.https://doi.org/10.1016/j.msea.2012.09.021.
- 23. Hosseini M, Pardis N, Danesh-Manesh H, Abbasi M, Kim D-I. Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB). Mater Des. 2017;113:128–36.https://doi.org/10.1016/j.matdes.2016.09.094.
- 24. Francis R. The corrosion of copper and its alloys: a practical guide for engineers. Nace International; 2011. https://doi.org/10.1179/147842211x13019063143766.
- 25. Mallikarjuna HM, Kashyap KT, Koppad PG, Ramesh CS, Keshavamurthy R. Microstructure and dry sliding wear behavior of Cu-Sn alloy reinforced with multiwalled carbon nanotubes. Trans Nonferrous Met Soc China. 2016;26:1755–64. https://doi.org/10.1016/S1003-6326(16)64269-3.
- 26. Javanmardi M, Ghalandari L. Developing the Cu/Sn multilayer composite through accumulative roll bonding (ARB): investigating the microstructural and mechanical features. Iran J Mater Form. 2021;8:26–38. https://doi.org/10.22099/ijmf.2020.38097.1165.
- 27. Adetunji OR, Ashimolowo RA, Aiyedun PO, Adesusi OM, Adeyemi HO, Oloyede OR. Tensile, hardness and microstructural properties of Sn–Pb solder alloys. Mater Today Proc. 2021;44:321–5.https://doi.org/10.1016/j.matpr.2020.09.656.
- 28. Han SZ, Choi EA, Lim SH, Kim S, Lee J. Alloy design strategies to increase strength and its trade-offs together. Prog Mater Sci. 2021;117: 100720. https://doi.org/10.1016/j.pmatsci.2020.100720.
- 29. Alizadeh M, Dashtestaninejad MK. Development of Cu-matrix, Al/Mn-reinforced, multilayered composites by accumulative rollbonding (ARB). J Alloys Compd. 2018;732:674–82. https://doi.org/10.1016/j.jallcom.2017.10.211.
- 30. Agnihotri R, Bhardwaj S. Synthesis and characterization of cuznal based shape memory alloys and to optimize behavior on different properties by varying weight percentage. Int J Mater Sci Eng Synth. 2016;4:229–34. https://doi.org/10.17706/ijmse.2016.4.4.229-234.
- 31. Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, SuzukiN, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300:464–7. https://doi.org/10.1126/science.1081957.
- 32. Mahdavian MM, Ghalandari L, Reihanian M. Accumulative rollbonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater Sci Eng A. 2013;579:99–107. https://doi.org/10.1016/j.msea.2013.05.002.
- 33. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31.
- 34. Bridgman PW. The stress distribution at the neck of a tension specimen. Trans Am Soc 1943.
- 35. Alizadeh M, Paydar MH, Jazi FS. Structural evaluation and mechanical properties of nanostructured Al/B4C composite fabricated by ARB process. Compos Part B Eng. 2013;44:339–43.
- 36. Ghalandari L, Mahdavian MM, Reihanian M, Mahmoudiniya M. Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): a study of microstructure and mechanical properties. Mater Sci Eng A. 2016;661:179–86. https://doi.org/10.1016/j.msea.2016.02.070.
- 37. Kümmel F, Diepold B, Sauer KF, Schunk C, Prakash A, Höppel HW, Göken M. High light weight potential of ultrafine-grained aluminum/steel laminated metal composites produced by accumulative roll bonding. Adv Eng Mater. 2019;21:1800286.https://doi.org/10.1002/adem.201800286.
- 38. Kalantarrashidi N, Alizadeh M. Structure, wear and corrosion characterizations of Al/20wt.% Zn multilayered composites fabricated by cross-accumulative roll bonding. J Manuf Process. 2020;56:1050–8. https://doi.org/10.1016/j.jmapro.2020.05.023.
- 39. Hwang Y-M, Hsu H-H, Lee H-J. Analysis of plastic instability during sandwich sheet rolling. Int J Mach Tools Manuf. 1996;36:47–62. https://doi.org/10.1016/0890-6955(95)92628-C.
- 40. Rahdari M, Reihanian M, Baghal SML. Microstructural control and layer continuity in deformation bonding of metallic laminated composites. Mater Sci Eng A. 2018;738:98–110. https://doi.org/10.1016/j.msea.2018.09.080.
- 41. Ghalandari L, Mahdavian MM, Reihanian M. Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB). Mater Sci Eng A.2014;593:145–52.
- 42. Mahdavian MM, Ghalandari L, Reihanian M. Accumulative rollbonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater Sci Eng. 2013;579:99–107.
- 43. Eizadjou M, Manesh HD, Janghorban K. Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process. J Alloys Compd. 2009;474:406–15.https://doi.org/10.1016/j.jallcom.2008.06.161.
- 44. Jabłońska M, Maciąg T, Nowak M, Rzychoń T, Czerny M, Kowalczyk K. Thermal and structural analysis of hightin bronze of chemical composition corresponding to the composition of thesinging bowl. J Therm Anal Calorim. 2019;137:735–41. https://doi.org/10.1007/s10973-019-08015-z.
- 45. Nasedkina Y, Sauvage X, Bobruk EV, Murashkin MY, Valiev RZ, Enikeev NA. Mechanisms of precipitation induced by large strainsin the Al–Cu system. J Alloys Compd. 2017;710:736–47. https://doi.org/10.1016/j.jallcom.2017.03.312.
- 46. Seifollahzadeh P, Alizadeh M, Abbasi MR. Strength prediction of multi-layered copper-based composites fabricated by accumulative roll bonding. Trans Nonferrous Met Soc China. 2021;31:1729–39.https://doi.org/10.1016/S1003-6326(21)65611-X.
- 47. El-Mahallawy N, Fathy A, Abdelaziem W, Hassan M. Microstructure evolution and mechanical properties of Al/Al–12%Si multi-layer processed by accumulative roll bonding (ARB). Mater Sci Eng A. 2015;647:127–35. https://doi.org/10.1016/j.msea.2015.08.064.
- 48. Dehsorkhi RN, Qods F, Tajally M. Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process. Mater Sci Eng A. 2011;530:63–72. https://doi.org/10.1016/j.msea.2011.09.040.
- 49. So ACK, Chan YC, Lai JKL. Aging studies of Cu–Sn intermetallic compounds in annealed surface mount solder joints. IEEE Trans Components Package Manuf Technol Part B. 1997;20:161–6.https://doi.org/10.1109/96.575568.
- 50. Park K-T, Kwon H-J, Kim W-J, Kim Y-S. Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater Sci Eng A. 2001;316:145–52. https:// doi. org/ 10. 1016/ S0921- 5093(01)01261-8.
- 51. Jamaati R, Toroghinejad MR, Dutkiewicz J, Szpunar JA. Investigation of nanostructured Al/Al2O3 composite produced by accumulative roll bonding process. Mater Des. 2012;35:37–42. https://doi.org/10.1016/j.matdes.2011.09.040.
- 52. Gubicza J, Chinh NQ, Csanádi T, Langdon TG, Ungár T. Microstructure and strength of severely deformed FCC metals. Mater Sci Eng A. 2007;462:86–90. https://doi.org/10.1016/j.msea.2006.02.455.
- 53. Siegel RW, Fougere GE. Mechanical properties of nanophase metals. Nanostruct Mater. 1995;6:205–16. https://doi.org/10.1016/0965-9773(95)00044-5.
- 54. Eizadjou M, Fattahi H, Shariat MH. Pitting corrosion susceptibility of ultrafine grains commercially pure aluminium produced by accumulative roll bonding process. Corros Eng Sci Technol.2012;47:19–24. https://doi.org/10.1179/147842211X13094269889335.
- 55. Carvalho ML. Corrosion of copper alloys in natural seawater: effects of hydrodynamics and pH. Université Pierre et Marie Curie-Paris VI, 2014. https://theses.hal.science/tel-01207012.
- 56. Cheng CQ, Yang F, Zhao J, Wang LH, Li XG. Leaching of heavy metal elements in solder alloys. Corros Sci. 2011;53:1738–47.https://doi.org/10.1016/j.corsci.2011.01.049.
- 57. Li D, Conway PP, Liu C. Corrosion characterization of tin–leadand lead free solders in 3.5wt.% NaCl solution. Corros Sci. 2008;50:995–1004. https://doi.org/10.1016/j.corsci.2007. 11. 025.
- 58. Chang T, Maltseva A, Volovitch P, Odnevall-Wallinder I, Leygraf C. A mechanistic study of stratified patina evolution on Sn-bronzein chloride-rich atmospheres. Corros Sci. 2020;166:108477.https://doi.org/10.1016/j.corsci.2020.108477.
- 59. Sadawy MM, Ghanem M. Grain refinement of bronze alloy byequal-channel angular pressing (ECAP) and its effect on corrosion behaviour. Def Technol. 2016;12:316–23. https://doi.org/10.1016/j.dt.2016.01.013.
- 60. Shakoori-Oskooie M, Asgharzadeh H, Sadighikia S, Salehi M. Significant corrosion resistance in an ultrafine-grained Al6063 alloy with a bimodal grain-size distribution through a self-anodicprotection mechanism. Metals (Basel). 2016. https://doi.org/10.3390/met6120307.
- 61. Seri O. The effect of NaCl concentration on the corrosion behavior of aluminum containing iron. Corros Sci. 1994;36:1789–803.https://doi.org/10.1016/0010-938X(94)90132-5.
- 62. Abbasi-Aghuy A, Zakeri M, Moayed MH, Mazinani M. Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corros Sci. 2015;94:368–76. https:// doi.org/ 10. 1016/j. corsci. 2015.02.024.
- 63. Son I-J, Nakano H, Oue S, Kobayashi S, Fukushima H, Horita Z. Pitting corrosion resistance of ultrafine-grained aluminum processed by severe plastic deformation. Mater Trans. 2006;47:1163–9. https://doi.org/10.2320/matertrans.47.1163.
- 64. Miyamoto H, Harada K, Mimaki T, Vinogradov A, Hashimoto S. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing. Corros Sci. 2008;50:1215–20. https://doi.org/10.1016/j.corsci.2008.01.024.
- 65. Nikfahm A, Danaee I, Ashrafi A, Toroghinejad MR. Effect of grain size changes on corrosion behavior of copper produced by accumulative roll bonding process. Mater Res J Mater.2013;16:1379–86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9b7c05e-f01b-4107-8c68-a7bbb69e064a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.