PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the impact of artificial intelligence on humanrobot cooperation in the context of Industry 4.0

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The function of Artificial Intelligence (AI) in Human-Robot Cooperation (HRC) in Industry 4.0 is unequivocally important and cannot be undervalued. It uses Machine Learning (ML) and Deep Learning (DL) to enhance collaboration between humans and robots in smart manufacturing. These algorithms effectively manage and analyze data from sensors, machinery, and other associated entities. As an outcome, they can extract significant insights that can be beneficial in optimizing the manufacturing process overall. Because dumb manufacturing systems hinder coordination, collaboration, and communication among various manufacturing process components. Consequently, efficiency, quality, and productivity all suffer as a whole. Additionally, Artificial Intelligence (AI) makes it possible to implement sophisticated learning processes that enhance human-robot collaboration and effectiveness when it comes to assembly tasks in the manufacturing domain by enabling learning at a level that is comparable to human-human interactions. When Artificial Intelligence (AI) is widely applied in Human-Robot Cooperation (HRC), a new and dynamic environment for human-robot collaboration is created and responsibilities are divided and distributed throughout social and physical spaces. In conclusion, Artificial Intelligence (AI) plays a crucial and indispensable role in facilitating effective and efficient Human-Robot Cooperation (HRC) within the framework of Industry 4.0. The implementation of Artificial Intelligence (AI)-based algorithms, encompassing deep learning, machine learning, and reinforcement learning, is highly consequential as it enhances human-robot collaboration, streamlines production procedures, and boosts overall productivity, quality, and efficiency in the manufacturing industry.
Rocznik
Strony
138--156
Opis fizyczny
Bibliogr. 47 poz., fig., tab.
Twórcy
autor
  • Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering, Iraq
autor
  • Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering, Iraq
autor
  • Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering, Iraq
autor
  • Erbil Polytechnic University, Technical College of Engineering, Department of Information System Engineering, Iraq
Bibliografia
  • [1] Abdulazeez, D. H., & Askar, S. K. (2024). A novel offloading mechanism leveraging Fuzzy Logic and Deep Reinforcement Learning to improve IoT application performance in a three-layer architecture within the Fog-Cloud environment. IEEE Access, 12, 39936-39952. https://doi.org/10.1109/ACCESS.2024.3376670
  • [2] Ahmad, M., Sadiq, S., Eshmawi, A. A., Alluhaidan, A. S., Umer, M., Ullah, S., & Nappi, M. (2022). Industry 4.0 technologies and their applications in fighting COVID-19 pandemic using deep learning techniques. Computers in Biology and Medicine, 145, 105418. https://doi.org/10.1016/j.compbiomed.2022.105418
  • [3] Akkaladevi, S. C., Plasch, M., Pichler, A., & Ikeda, M. (2019). Towards reinforcement based learning of an assembly process for human robot collaboration. Procedia Manufacturing, 38, 1491-1498. https://doi.org/10.1016/j.promfg.2020.01.138
  • [4] Alshahrani, S. T. (2023). Industry 4.0 in “Major Emerging Markets”: A systematic literature review of benefits, use, challenges, and mitigation strategies in supply chain management. Sustainability, 15(20), 14811. https://doi.org/10.3390/su152014811
  • [5] Angelopoulos, A., Michailidis, E. T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., & Zahariadis, T. (2020). Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects. Sensors, 20(1), 109. https://doi.org/10.3390/s20010109
  • [6] Asad, U., Rasheed, S., Lughmani, W. A., Kazim, T., Khalid, A., & Pannek, J. (2023). Biomechanical modeling of human-robot accident scenarios: A computational assessment for heavy-payload-capacity robots. Applied Sciences, 13(3), 1957. https://doi.org/10.3390/app13031957
  • [7] Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440
  • [8] Baratta, A., Cimino, A., Gnoni, M. G., & Longo, F. (2022). Human robot collaboration in Industry 4.0: A literature review. Procedia Computer Science, 217, 1887-1895. https://doi.org/10.1016/j.procs.2022.12.389
  • [9] Bi, Z. M., Luo, M., Miao, Z., Zhang, B., Zhang, W. J., & Wang, L. (2021). Safety assurance mechanisms of collaborative robotic systems in manufacturing. Robotics and Computer-Integrated Manufacturing, 67, 102022. https://doi.org/10.1016/j.rcim.2020.102022
  • [10] Borboni, A., Reddy, K. V. V., Elamvazuthi, I., AL-Quraishi, M. S., Natarajan, E., & Azhar Ali, S. S. (2023). The expanding role of Artificial Intelligence in collaborative robots for industrial applications: A systematic review of recent works. Machines, 11(1), 111. https://doi.org/10.3390/machines11010111
  • [11] Buerkle, A., Eaton, W., Lohse, N., Bamber, T., & Ferreira, P. (2021). EEG based arm movement intention recognition towards enhanced safety in symbiotic human-robot collaboration. Robotics and Computer-Integrated Manufacturing, 70, 102137. https://doi.org/10.1016/j.rcim.2021.102137
  • [12] Chen, X., Wang, N., Cheng, H., & Yang, C. (2020). Neural learning enhanced variable admittance control for human-robot collaboration. IEEE Access, 8, 25727-25737. https://doi.org/10.1109/ACCESS.2020.2969085
  • [13] Cimino, A., Gnoni, M. G., Longo, F., Barone, G., Fedele, M., & Le Piane, D. (2022). Modeling & simulation as Industry 4.0 enabling technology to support manufacturing process design: a real industrial application. Procedia Computer Science, 217, 1877-1886. https://doi.org/10.1016/j.procs.2022.12.388
  • [14] Elsisi, M., Tran, M. Q., Mahmoud, K., Lehtonen, M., & Darwish, M. M. F. (2021). Deep learning-based industry 4.0 and internet of things towards effective energy management for smart buildings. Sensors, 21(4), 1038. https://doi.org/10.3390/s21041038
  • [15] Ferrarini, S., Bilancia, P., Raffaeli, R., Peruzzini, M., & Pellicciari, M. (2024). A method for the assessment and compensation of positioning errors in industrial robots. Robotics and Computer-Integrated Manufacturing, 85, 102622. https://doi.org/10.1016/j.rcim.2023.102622
  • [16] Fiestas Lopez Guido, J. C., Kim, J. W., Popkowski Leszczyc, P. T. L., Pontes, N., & Tuzovic, S. (2024). Retail robots as sales assistants: how speciesism moderates the effect of robot intelligence on customer perceptions and behaviour. Journal of Service Theory and Practice, 34(1), 127-154. https://doi.org/10.1108/JSTP-04-2023-0123
  • [17] Fu, J., Lin, H., Xu, W., & Gan, D. (2022). A novel variable stiffness compliant robotic link based on discrete variable stiffness units for safe human-robot interaction. Mechanisms and Robotics Conference, 7(46), V007T07A009. https://doi.org/10.1115/DETC2022-89825
  • [18] Ghadirzadeh, A., Chen, X., Yin, W., Yi, Z., Björkman, M., & Kragic, D. (2020). Human-centered collaborative robots with deep reinforcement learning. ArXiv, abs/2007.01009. https://doi.org/10.48550/arXiv.2007.01009
  • [19] Gomes, N. M., Martins, F. N., Lima, J., & Wörtche, H. (2022). Reinforcement learning for collaborative robots pick-and-place applications: A case study. Automation, 3(1), 223-241. https://doi.org/10.3390/automation3010011
  • [20] Gómez-Hernández, J.-F., Gutiérrez-Hernández, J.-M., Jimeno-Morenilla, A., Sánchez-Romero, J.-L., & Fabregat-Periago, M.-D. (2024). Development of an integrated robotic workcell for automated bonding in footwear manufacturing. IEEE Access, 12, 5066-5080. https://doi.org/10.1109/ACCESS.2024.3350441
  • [21] Goodrich, M. A., & Schultz, A. C. (2007). Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, 1(3), 203-275. https://doi.org/10.1561/1100000005
  • [22] Guerra-Zubiaga, D. A., dos Santos, M. C., Voicu, R. C., Richards, G., Gosnell, S., Franco Barbosa, G. (2023). A digital twin approach to support a multi-task industrial robot operation using design of experiments. https://doi.org/10.21203/rs.3.rs-3425601/v1
  • [23] Heo, Y. J., Kim, D., Lee, W., Kim, H., Park, J., & Chung, W. K. (2019). Collision detection for industrial collaborative robots: A deep learning approach. IEEE Robotics and Automation Letters, 4(2), 740-746. https://doi.org/10.1109/LRA.2019.2893400
  • [24] Hjorth, S., & Chrysostomou, D. (2022). Human-robot collaboration in industrial environments: A literature review on non-destructive disassembly. Robotics and Computer-Integrated Manufacturing, 73, 102208. https://doi.org/10.1016/j.rcim.2021.102208
  • [25] Hopko, S. K., & Mehta, R. K. (2022). Trust in shared-space collaborative robots: Shedding light on the human brain. Human Factors: The Journal of the Human Factors and Ergonomics Society, 66(2), 490-509. https://doi.org/10.1177/00187208221109039
  • [26] Ibrahim, M. A., & Askar, S. (2023). An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement learning algorithm. IEEE Access, 11, 133607-133622. https://doi.org/10.1109/ACCESS.2023.3337034
  • [27] Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2022). Significant applications of cobots in the field of manufacturing. Cognitive Robotics, 2, 222-233. https://doi.org/10.1016/j.cogr.2022.10.001
  • [28] Kakade, S., Patle, B., & Umbarkar, A. (2023). Applications of collaborative robots in agile manufacturing: a review. Robotic Systems and Applications, 3(1), 59-83. https://doi.org/10.21595/rsa.2023.23238
  • [29] Li, X., Chen, W., & Alrasheedi, M. (2023). Challenges of the collaborative innovation system in public higher education in the era of industry 4.0 using an integrated framework. Journal of Innovation and Knowledge, 8(4), 100430. https://doi.org/10.1016/j.jik.2023.100430
  • [30] Maniscalco, U., Minutolo, A., Storniolo, P., & Esposito, M. (2024). Towards a more anthropomorphic interaction with robots in museum settings: An experimental study. Robotics and Autonomous Systems, 171, 104561. https://doi.org/10.1016/j.robot.2023.104561
  • [31] Mayr, M., Ahmad, F., Duerr, A., & Krueger, V. (2023). Using knowledge representation and task planning for robot-agnostic skills on the example of contact-rich wiping tasks. ArXiv, abs/2308.14206. https://doi.org/10.48550/arXiv.2308.14206
  • [32] Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., & Chryssolouris, G. (2015). Design considerations for safe human-robot collaborative workplaces. Procedia CIRP, 37, 248-253. https://doi.org/10.1016/j.procir.2015.08.014
  • [33] Noor Hasnan, N. Z., & Yusoff, Y. M. (2018). Short review: Application areas of Industry 4.0 technologies in food processing sector. 2018 IEEE 16th Student Conference on Research and Development (SCOReD) (pp.1-6). IEEE. https://doi.org/10.1109/SCORED.2018.8711184
  • [34] Othman, U., & Yang, E. (2023). Human-robot collaborations in smart manufacturing environments: Review and outlook †. Sensors, 23(12), 5663. https://doi.org/10.3390/s23125663
  • [35] Pagani, R., Nuzzi, C., Ghidelli, M., Borboni, A., Lancini, M., & Legnani, G. (2021). Cobot user frame calibration: Evaluation and comparison between positioning repeatability performances achieved by traditional and vision-based methods. Robotics, 10(1), 45. https://doi.org/10.3390/robotics10010045
  • [36] Park, J., Kim, T., Gu, C., Kang, Y., & Cheong, J. (2024). Dynamic collision estimator for collaborative robots: A dynamic Bayesian network with Markov model for highly reliable collision detection. Robotics and Computer-Integrated Manufacturing, 86, 102692. https://doi.org/10.1016/j.rcim.2023.102692
  • [37] Prati, E., Peruzzini, M., Pellicciari, M., & Raffaeli, R. (2021). How to include user experience in the design of human-robot interaction. Robotics and Computer-Integrated Manufacturing, 68, 102072. https://doi.org/10.1016/j.rcim.2020.102072
  • [38] Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., & Hosen, A. S. M. S. (2023). Machine learning and internet of things in industry 4.0: A review. Measurement: Sensors, 28, 100822. https://doi.org/10.1016/j.measen.2023.100822
  • [39] Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, S. (2021). Robotic process automation and artificial intelligence in Industry 4.0 - A literature review. Procedia Computer Science, 181, 51-58. https://doi.org/10.1016/j.procs.2021.01.104
  • [40] Segura, P., Lobato-Calleros, O., Ramírez-Serrano, A., & Soria, I. (2021). Human-robot collaborative systems: Structural components for current manufacturing applications. Advances in Industrial and Manufacturing Engineering, 3, 100060. https://doi.org/10.1016/j.aime.2021.100060
  • [41] Sharma, I., Gupta, S. K., Mishra, A., & Askar, S. (2023). Synchronous federated learning based multi unmanned aerial vehicles for secure applications. Scalable Computing: Practice and Experiencet, 24(3), 191-201. https://doi.org/10.12694/scpe.v24i3.2136
  • [42] Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020). Collaborative robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) (pp. 1-5). IEEE. https://doi.org/10.1109/ICETST49965.2020.9080724
  • [43] Silva, G., Rekik, K., Kanso, A., & Schnitman, L. (2022). Multi-perspective human robot interaction through an augmented video interface supported by deep learning. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1168-1173). https://doi.org/10.1109/RO-MAN53752.2022.9900671
  • [44] Tosello, E., Castaman, N., & Menegatti, E. (2019). Using robotics to train students for Industry 4.0. IFAC-PapersOnLine, 52(9), 153-158. https://doi.org/10.1016/j.ifacol.2019.08.185
  • [45] Wang, S., Zhang, J., Wang, P., Law, J., Calinescu, R., & Mihaylova, L. (2024). A deep learning-enhanced Digital Twin framework for improving safety and reliability in human-robot collaborative manufacturing. Robotics and Computer-Integrated Manufacturing, 85, 102608. https://doi.org/10.1016/j.rcim.2023.102608
  • [46] Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., & Liu, S. (2022). A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics and Computer-Integrated Manufacturing, 73, 102227. https://doi.org/10.1016/j.rcim.2021.102227
  • [47] Zhang, Y., Ding, K., Hui, J., Liu, S., Guo, W., & Wang, L. (2024). Skeleton-RGB integrated highly similar human action prediction in human-robot collaborative assembly. Robotics and Computer-Integrated Manufacturing, 86, 102659. https://doi.org/10.1016/j.rcim.2023.102659
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9aef511-476b-4740-b8d0-58d90f562734
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.