PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

CFD-DEM simulation of raceway size and mechanical characteristics of industrial scale blast furnace

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The raceway plays a crucial role in ensuring the stable functioning of the ironmaking blast furnace. It is the key site where the chemical reaction of coke combustion takes place, providing the necessary heat and reducing gas for the upper iron ore reduction process. Consequently, the size of the raceway serves as an essential indicator of the blast furnace’s operational condition. In this study, a mathematical model for the raceway of an industrial-scale blast furnace was established. Extensive innovation investigations were conducted to explore the characteristics pertaining to the raceway’s size. The simulation outcomes demonstrate that both the particle size and the inlet velocity exert significant influences on the raceway dimensions. Specifically, the height of the raceway is predominantly affected by the particle size, whereas the inlet velocity predominantly influences the depth of the raceway.
Rocznik
Strony
71--78
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
  • School of Mathematics and Statistics, Huangshan University, Huangshan 245041, China
  • Faculty of Engineering and Quantity Surveying, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
Bibliografia
  • 1. Dong, X., Yu, A., Yagi, J.-I. & Zulli, P. (2007). Modelling of multiphase flow in a blast furnace: Recent developments and future work. ISIJ Int., 47, 1553–1570. DOI: 10.2355/isijinternational.47.1553.
  • 2. Hilton, J.E. & Cleary, P.W. (2012). Raceway formation in laterally gas-driven particle beds. Chem. Eng. Sci., 80, 306–316. DOI: 10.1016/j.ces.2012.06.044.
  • 3. Mathieson, J.G., Truelove, J.S. & Rogers, H. (2005). Toward an understanding of coal combustion in blast furnace tuyere injection. Fuel., 84, 1229–1237. DOI: 10.1016/j.fuel.2004.06.036.
  • 4. Hatano, M., Fukuda, M. & Takeuchi, M. (1976). An experimental study of the formation of raceway using a cold model. Trans. Iron Steel Inst. Jpn., 62, 25–32. DOI: 10.2355/tetsutohagane1955.62.1_25.
  • 5. Straka, R., Bernasowski, M., Klimczyk, A., Stachura, R. & Svyetlichnyy, D. (2020). Prediction of raceway shape in zinc blast furnace under the different blast parameters. Energy., 207. DOI: 10.1016/j.energy.2020.118153.
  • 6. Zhang, S., Wen, L., Bai, C., Chen, D. & Ouyang Q. (2006). The temperature field digitization of radiation images in blast furnace raceway. ISIJ Int., 46, 1410–1415. DOI: 10.2355/isijinternational.46.1410.
  • 7. Li, W., Zhuo, Y., Bao, J. & Shen, Y. (2021). A data-based soft-sensor approach to estimating raceway depth in ironmaking blast furnaces. Powder Technol., 390, 529–538. DOI: 10.1016/j. powtec.2021.05.072.
  • 8. Burgess, J.M. (1985). Fuel combustion in the blast furnace raceway zone. Prog. Energy Combust. Sci., 11, 6182. DOI: 10.1016/0360-1285(85)90013-9.
  • 9. Rajneesh, S. & Gupta, G.S. (2003). Importance of frictional forces on the formation of cavity in a packed bed under cross flow of gas. Powder Technol., 134, 72–85. DOI: 10.1016/s0032-5910(03)00136-0.
  • 10. Rajneesh, S., Sarkar, S. & Gupta, G.S. (2004). Prediction of raceway size in blast furnace from two dimensional experimental correlations. ISIJ Int., 44, 1298–1307. DOI: 10.2355/isijinternational.44.1298.
  • 11. Sastry, G.S.S.R.K., Gupta, G.S. & Lahiri, A.K. (2003). Cold model study of raceway under mixed particle conditions. Ironmaking & amp; Steelmaking, 30, 61–65. DOI: 10.1179/030192303225009498.
  • 12. Zhou, D.E.P., Guo, S., Zeng, J., Xu, Q., Guo, L., Hou, Q. & Yu, A. (2022). Particle-scale study of coke combustion in the raceway of an ironmaking blast furnace. Fuel., 311. DOI: 10.1016/j.fuel.2021.122490.
  • 13. Wei, G., Zhang, H., An, X., & Hou, Q. (2022). Effect of particle shape on raceway size and pressure drop in a blast furnace: Experimental, numerical and theoretical analyses. Adv. Powder Technol., 33. DOI: 10.1016/j.apt.2022.103455.
  • 14. Li, X., Pang, K., Liang, C., Liu, D., Ma, J. & Chen, X. (2023). Particle attrition-breakage model for CFD-DEM simulation based on FRM and WPM: Application in blast furnace raceway. Powder Technol., 414. DOI: 10.1016/j.powtec.2022.118105.
  • 15. Wang, S. & Shen, Y. (2021). CFD-DEM modelling of raceway dynamics and coke combustion in an ironmaking blast furnace. Fuel, 302. DOI: 10.1016/j.fuel.2021.121167.
  • 16. Xu, D., Wang, S. & Shen, Y. (2023). An improved CFD-DEM modelling of raceway dynamics and coke combustion in an industrial-scale blast furnace. Chem. Eng. J., 455. DOI: 10.1016/j.cej.2022.140677.
  • 17. Cundall, P.A. & Strack, O.D.L. (1979). A discrete numerical model for granular assemblies. Géotechnique., 29, 47–65. DOI: 10.1680/geot.1979.29.1.47.
  • 18. Tsuji, Y., Kawaguchi, T. & Tanaka, T. (1993). Discrete particle simulation of two-dimensional fluidized bed. Powder Technol., 77, 79–87. DOI: 10.1016/0032-5910(93)85010-7.
  • 19. Ding, J. & Gidaspow, D. (1990). A bubbling fluidization model using kinetic theory of granular flow. AlChE J., 36, 523–538. DOI: 10.1002/aic.690360404.
  • 20. Garg, R., Galvin, J., Li, T. & Pannala, S. (2012). Documentation of open-source MFIX–DEM software for gas-solids flows. https://mfix.netl.doe.gov/doc/mfix-archive/mfix_current_documentation/dem_doc_2012-1.pdf
  • 21. Garg, R., Galvin, J., Li, T. & Pannala, S. (2012). Open-source MFIX-DEM software for gas–solids flows: Part I—Verification studies. Powder Technol., 220, 122–137. DOI: 10.1016/j. powtec.2011.09.019.
  • 22. van der Hoef, M.A., Ye, M., van Sint Annaland, M., Andrews, A.T., Sundaresan, S. & Kuipers, J.A.M. (2006). Multiscale modeling of gas-fluidized beds. Computational Fluid Dynamics. pp. 65–149.
  • 23. Hu, C., Luo, K., Wang, S., Sun, L. & Fan, J. (2019). Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chem. Eng. Sci., 195, 693–706. DOI: 10.1016/j.ces.2018.10.015.
  • 24. Ku, X., Jin, H. & Lin, J. (2017). Comparison of gasification performances between raw and torrefied biomasses in an air-blown fluidized-bed gasifier. Chem. Eng. Sci., 168, 235–249. DOI: 10.1016/j.ces.2017.04.050.
  • 25. Wang, S., Luo, K. & Fan, J. (2020). CFD-DEM coupled with thermochemical sub-models for biomass gasification: Validation and sensitivity analysis. Chem. Eng. Sci., 217. DOI: 10.1016/j.ces.2020.115550.
  • 26. Hou, Q. & Yu, D.E.A. (2016). Discrete particle modeling of lateral jets into a packed bed and micromechanical analysis of the stability of raceways. AlChE J., 62, 4240–4250. DOI: 10.1002/aic.15358.
  • 27. Zhou, D.E.P., Guo, S., Zeng, J., Cui, J., Jiang, Y., Lu, Y., Jiang, Z., Li, Z. & Kuang, S. (2022). Particle shape effect on hydrodynamics and heat transfer in spouted bed: A CFD–DEM study. Particuology., 69, 10–21. DOI: 10.1016/j. partic.2021.11.009.
  • 28. Zhou, D.E.P., Ji, L., Cui, J., Xu, Q., Guo, L. & Yu, A. (2023). Particle-scale modelling of injected hydrogen and coke co-combustion in the raceway of an ironmaking blast furnace. Fuel., 336. DOI: 10.1016/j.fuel.2022.126778.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9ae2d68-0b01-4313-a208-e911f4f9343c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.