PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental and numerical determination of the longitudinal modulus of elasticity in wooden structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to experimentally and numerically determine the longitudinal modulus of elasticity by the four-point bending method. Samples of wooden beams over which the experimental research was performed were made of silver fir (Abies alba) as prescribed by standard EN 408. The experimental part includes determining bending strength and deformation forces. Experimentally determined bending strength and deflection forces were the input data for evaluating the modulus of elasticity of wooden beams. A numerical analysis of the bending strength by the finite element method was carried out using the ANSYS software package. The numerical model agreed well with the experiments in terms of bending. A numerical model can predict the bending of beams of different sizes. Results showed that the experimental and numerical values are close and usable for further exploitation. Comparison between the experimental and computational force versus the displacement response showed a very good correlation in the results for the fir wood specimens under four-point bending tests.
Rocznik
Strony
art. no. 1644--3985.421.10
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • University of Bihać, Faculty of Technical Engineering, Bosnia and Herzegovina
autor
  • Shahrekord University, Department of Natural Resources and Earth Science, Shahrekord, Iran
  • Shahrekord University, Department of Natural Resources and Earth Science, Shahrekord, Iran
autor
  • University of Ljubljana, Biotechnical Faculty, Department of Wood Science, Ljubljana, Slovenia
Bibliografia
  • Akram S., Ann Q. [2015]: Newton raphson method. International Journal of Scientific and Engineering Research 6 [7]:1748-1752
  • Andor K., Lengyel A., Polgár R., Fodor T., Karácsonyi Z. [2015]: Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric. Construction and Building Materials 99: 200–207. DOI: https://doi.org/10.1016/j.conbuildmat.2015.09.026
  • Bowyer J., Bratkovich S.T., Howe J.E., Fernholz K.A., Frank M.A., Hanessian S.A., Pepke E.D. [2016]: Modern tall wood buildings: Opportunities for innovation. Dovetail Partners Inc.: Minneapolis, MN, USA
  • Chu D., Hasanagić R., Hodžić A., Kržišnik D., Hodžić D., Bahmani M., Humar M. [2022]: Application of Temperature and Process Duration as a Method for Predicting the Mechanical Properties of Thermally Modified Timber. Forests 13 [2]: 217. DOI: https://doi.org/10.3390/f13020217
  • Clouston P., Bathon L.A., Schreyer A. [2005]: Shear and bending performance of a novel wood–concrete composite system. Journal of Structural Engineering 131: 1404–1412
  • Daudeville L. [1999]: Fracture in spruce: experiment and numerical analysis by linear and non linear fracture mechanics. Holz als Roh-und Werkstoff 57: 425–432
  • de Jesus A.M., Pinto J.M., Morais J.J. [2012]: Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths. Construction and Building Materials 35: 817–828. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.124
  • Fajdiga G., Rajh D., Nečemer B., Glodež S., Šraml M. [2019]: Experimental and numerical determination of the mechanical properties of spruce wood. Forests 10 [12]: 1140. DOI: https://doi.org/10.3390/f10121140
  • Fajdiga G., Zafošnik B., Gospodarič B., Straže A. [2016]: Compression test of thermally-treated beech wood: experimental and numerical analysis. BioResources 11 [1]: 223–234. DOI: https://doi.org/10.15376/biores.11.1.223-234
  • Gaff M., Gašparı́k M., Borůvka V., Haviarová E. [2015]: Stress simulation in layered wood-based materials under mechanical loading. Materials & Design 87: 1065–1071. DOI: https://doi.org/10.1016/j.matdes.2015.08.128
  • Guindos P., Guaita M. [2013]: A three-dimensonal wood material model to simulate the behavior of wood with any type of knot at the macro-scale. Wood science and technology 47 [3]: 585–599. DOI: https://doi.org/10.1007/s00226-012-0517-4
  • Hackspiel C., de Borst K., Lukacevic M. [2014]: A numerical simulation tool for wood grading: model validation and parameter studies. Wood science and technology 48: 651–669. DOI: 10.1007/s00226-014-0630-7
  • Hasanagić R. [2022]: Optimization of thermal modification of wood by genetic algorithm and classical mathematical analysis. Journal of Forest Science 68: 35–45. DOI: https://doi.org/10.17221/95/2021-JFS
  • Hasanagić R. [2018]: Modeling and prediction of fracture force to tighten solid wood elements by genetic programming. Tehnika 73 [5]: 653–657. DOI: https://doi.org/10.5937/tehnika1805653H
  • Hasanagić R., Ganguly S., Bajramović E., Hasanagić A. [2021]: Mechanical properties changes in fir wood (abies sp.), linden wood (tilia sp.), and beech wood (fagus sp.) subjected to various thermal modification process conditions. IOP Conference Series: Materials Science and Engineering 1208: 012025. DOI: https://doi.org/10.1088/1757-899X/1208/1/012025
  • Hasanagić R, Hodžić A., Jurković M. [2020]: Modelling and optimization of tensile break force of solid wood elements lengthened by finger joint. Journal of Adhesion Science and Technology 34 [9]: 1013–1027. DOI: https://doi.org/10.1080/01694243.2019.1690266
  • Hu W., Wan H., Guan H. [2019] Size effect on the elastic mechanical properties of beech and its application in finite element analysis of wood structures. Forests 10 [9]: 783. DOI: https://doi.org/10.3390/f10090783
  • Kržišnik D., Grbec S., Lesar B., Plavčak D., Šega B., Šernek M., Humar M. [2020]: Durability and mechanical performance of differently treated glulam beams during two years of outdoor exposure. Drvna industrija 71 [3]: 243–252. DOI: https://doi.org/10.5552/drvind.2020.1957
  • Kržišnik D., Lesar B., Thaler N., Humar M. [2018]: Micro and material climate monitoring in wooden buildings in sub-Alpine environments. Construction and Building Materials 166: 188–195. DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.118
  • Lukacevic M., Füssl J., Griessner M., Eberhardsteiner J. [2014]: Performance Assessment of a Numerical Simulation Tool for Wooden Boards with Knots by Means of Full-Field Deformation Measurements. Strain 50 [4]: 301–317. DOI: https://doi.org/10.1111/str.12093
  • Mahapatra K., Gustavsson L. [2009]: General conditions for construction of multi-storey wooden buildings in Western Europe. School of Technology and Design, Växjö University Växjö, Sweden
  • Nadir Y., Nagarajan P., Ameen M., et.al. [2016]: Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Construction and Building Materials 112: 547–555. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.133
  • Raftery G. M., Harte A. M. [2013]: Nonlinear numerical modelling of FRP reinforced glued laminated timber. Composites Part B: Engineering 52: 40–50. DOI: https://doi.org/10.1016/j.compositesb.2013.03.038
  • Raftery G. M., Kelly F. [2015]: Basalt FRP rods for reinforcement and repair of timber. Composites Part B: Engineering 70: 9–19. DOI: https://doi.org/10.1016/j.compositesb.2014.10.036
  • Rescalvo F.J., Timbolmas C., Bravo R., Gallego A. [2020]: Experimental and numerical analysis of mixed I-214 poplar/pinus sylvestris laminated timber subjected to bending loadings. Material 13: 3134. DOI: https://doi.org/10.3390/ma13143134
  • Thorhallsson E.R., Hinriksson G.I., Snæbjörnsson J.T. [2017]: Strength and stiffness of glulam beams reinforced with glass and basalt fibres. Composites Part B: Engineering 115: 300–307. DOI: https://doi.org/10.1016/j.compositesb.2016.09.074
  • Valipour H.R., Crews K. [2011]: Efficient finite element modelling of timber beams strengthened with bonded fibre reinforced polymers. Construction and Building Materials 25:3291–3300. DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.017
  • Winter W., Tavoussi K., Pixner T., Parada F.R. [2012]: Timber-steel-hybrid beams for multi-storey buildings. Proceedings of: World Conference on Timber Engineering 2012: 22-25 August 2012, Vienna, Austria.
  • Zandbergs J. G., Smith F. W. [1988]: Finite element fracture prediction for wood with knots and cross grain. Wood and fiber science 20 [1]: 97–10
  • List of standards
  • EN 408:2013 Timber Structures‐Structural Timber and Glued Laminated Timber‐Determination of Some Physical and Mechanical Properties. Swedish Institute for Standards: Stockholm, Sweden
  • ISO 13061-14:2016 Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 14: Determination of volumetric shrinkage
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9acd96d-6098-48d8-b917-62ee6c2c3d96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.