PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the hydrogel amendment and the dry period duration on the green roof retention capacity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract: Climate changes as well as the urbanisation and economic development influence the characteristics of the stormwater runoff in the cities. The sealing of drainage basin surface leads to an increase of the runoff intensity, thereby decreasing the rainwater infiltration. This situation can lead to the risk of flooding in urban areas. Therefore, especially in great cities there is a need for application of such solutions that will support the operation of the sewage systems. The examples of such solutions are, among others, the green roofs. The paper presents the results of investigation of the water retention capacity of 4 green roof models containing following growing media: (1) the typical green roof substrate without any amendments, (2) the substrate with addition of about 1 % by weight of hydrogel (the cross-linked potassium polyacrylate), (3) the substrate containing about 0.25 % by weight of hydrogel, (4) the substrate with addition of expanded clay and perlite. The models were not vegetated in order to investigate only the water retention capacity of drainage elements and substrates. The water retention capacity of green roof models was investigated in the laboratory conditions with use of artificial precipitations simulated after diverse antecedent dry weather periods (ADWP) amounting to: 1, 2, 5, 7, and 12 days. The intensities of artificial precipitations were relatively high and ranged from 1.14 to 1.27 mm/min, whereas their durations ranged from 7.75 to 12.56 min. These values of intensities and durations corresponded to the design rainfall intensities calculated using Blaszczyk’s equation for annual rain depth equal to 600 mm and the return periods ranged from 5 to 15 years. The obtained results indicate that the water retention capacity of green roof models, expressed as the volumes (or depths) of rainwater retained within their structures, increases with an increase of ADWP. Results indicate that the relation between ADWP and the amount of water retained in the layers of green roofs in the case of relatively short antecedent dry weather periods provided for the analysis (from 1 to 7 days) may be approximately linear. The results of the one-way ANOVA indicate that in the case of all models there is a statistically significant difference between the values of retention depth for specified ADWP (p < 0.001). During more than half of simulated precipitations, especially in the case of longer ADWPs lasting 5, 7, and 12 days the best water retention capacity had Model 3, with substrate containing about 0.25 % by weight of hydrogel. On the other hand, the results show that the weakest retention capacity had Model 2 (with substrate containing 1 % by weight of hydrogel). In the case of longer ADWPs (lasting 7 and 12 days) relatively weak water retention capacity had Model 4 (with substrate containing the addition of expanded clay and perlite). It can be concluded that too large amount of hydrogel added to the substrate can have an unfavourable impact on the water retention capacity of green roofs.
Rocznik
Strony
357--371
Opis fizyczny
Bibliogr. 43 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Brzeźnicka 60A, 42-201 Częstochowa, Poland, phone +48 34 325 09 17, fax +48 34 372 13 04
  • Department of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Brzeźnicka 60A, 42-201 Częstochowa, Poland, phone +48 34 325 09 17, fax +48 34 372 13 04
autor
  • Department of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Brzeźnicka 60A, 42-201 Częstochowa, Poland, phone +48 34 325 09 17, fax +48 34 372 13 04
  • Department of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Brzeźnicka 60A, 42-201 Częstochowa, Poland, phone +48 34 325 09 17, fax +48 34 372 13 04
Bibliografia
  • [1] Mentens J, Raes D, Hermy M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape Urban Plan. 2006;77:217-26. DOI: 10.1016/j.landurbplan.2005.02.010.
  • [2] Czemiel-Berndtsson J. Green roof performance towards management of runoff water quantity and quality: a review. Ecol Eng. 2010;36:351-60. DOI: 10.1016/j.ecoleng.2009.12.014.
  • [3] Burszta-Adamiak E. Analysis of the retention capacity of green roofs. J Water Land Dev. 2012;16(I-IV):3-9. Available from: http://www.itp.edu.pl/wydawnictwo/journal/16_2012_I_VI/artykuly/Burszta%20Adamiak.pdf.
  • [4] Mrowiec M, Ociepa E, Malmur R, Deska I. Sustainable water management in cities under climate changes. Problemy Ekorozwoju/Problems Sust Develop. 2018:13(1):133-38. Available from: https://ekorozwoj.pollub.pl/no25/p.pdf.
  • [5] Jato-Espino D, Nora Sillanpää N, Charlesworth SM, Andrés-Doménech I. Coupling GIS with stormwater modelling for the location prioritization and hydrological simulation of permeable pavements in urban catchments. Water. 2016;8(10):451. DOI: 10.3390/w8100451.
  • [6] Davis M, Naumann S. Making the Case for Sustainable Urban Drainage Systems as a Nature-Based Solution to Urban Flooding. In: Kabisch N, Korn H, Stadler J, Bonn A, editors. Nature-Based Solutions to Climate Change Adaptation in Urban Areas, Theory and Practice of Urban Sustainability Transitions. Cham, Springer; 2017:123-37. DOI: 10.1007/978-3-319-56091-5_8.
  • [7] Fletcher TD, Shuster W, Hunt WF, Ashley R, Butler D, Arthur S, et al. SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015;12(7):3-20. DOI: 10.1080/1573062X.2014.916314.
  • [8] USEPA. Reducing Stormwater Costs through Low Impact Development (LID) Strategies and Practices, EPA 841-F-07-006, December 2007. Available from: http://www.nrc.gov/docs/ML1102/ML110270042.pdf.
  • [9] Edwards EC, Harter T, Fogg GE, Washburn B, Hamad H. Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. J Hydrol. 2016;539:539-53. DOI: 10.1016/j.jhydrol.2016.05.059.
  • [10] Aung TH, Hadi Khabbaz H, Fatahi B. Parametric study of applied stresses on infiltration modular cells installed under roads. Procedia Eng. 2016;143:1325-32. DOI: 10.1016/j.proeng.2016.06.154.
  • [11] Erickson AJ, Taguchi VJ, Gulliver JS. The challenge of maintaining stormwater control measures: a synthesis of recent research and practitioner experience. Sustainability. 2018;10:3666. DOI:10.3390/su10103666.
  • [12] Suchanek E, Mrowiec M. Use the method of dimensioning of infiltration-retention basins for management of rainwater. Inż Ekolog. 2015;41:160-5. DOI: 10.12912/23920629/1845.
  • [13] Gavrić S, Leonhardt G, Marsalek J, Viklander M. Processes improving urban stormwater quality in grass swales and filter strips: A review of research findings. Sci Total Environ. 2019;669:431-47. DOI: 10.1016/j.scitotenv.2019.03.072.
  • [14] Czemiel-Berndtsson J, Bengtsson L, Jinno K. Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng. 2009;35:369-80. DOI: 10.1016/j.ecoleng.2008.09.020.
  • [15] Breuning J, Yanders AC. Introduction to the FLL Guidelines for the Planning, Construction and Maintenance of Green Roofing. 2008 Edition of the Green Roofing Guideline. Green Roof Service LCC. 2012. Available from: http://www.greenrooftechnology.com/fll-green-roof-guideline.
  • [16] Shafique M, Kim R, Rafiq M. Green roof benefits, opportunities and challenges - A review. Renew Sust Energy Rev. 2018;90:757-73. DOI: 10.1016/j.rser.2018.04.006.
  • [17] Getter KL, Rowe DB. The role of extensive green roofs in sustainable development. Hort Sci. 2006;41(5):1276-85. Available from: https://pdfs.semanticscholar.org/1d76/263bb51f60a1eaf6a4a02c128a3eba1c0a3b.pdf.
  • [18] Grant G. Extensive green roofs in London. Urban Habitats 2006;4(1):51-65. Available from: http://www.urbanhabitats.org/v04n01/london_pdf.pdf.
  • [19] Jaffal I, Ouldboukhitine SA, Belarbi R. A comprehensive study of the impact of green roofs on building energy performance. Renew Energy. 2012;43:157-64. DOI: 10.1016/j.renene.2011.12.004.
  • [20] Castleton HF, Stovin V, Beck SBM, Davison JB. Green roofs; building energy savings and the potential for retrofit. Energy Buildings. 2010;42:1582-91. DOI: 10.1016/j.enbuild.2010.05.004.
  • [21] Vijayaraghavan K, Joshi UM, Balasubramanian R. A field study to evaluate runoff quality from green roofs. Water Res. 2012;46:1337-45. DOI: 10.1016/j.watres.2011.12.050.
  • [22] Kirichenko-Babko M, Łagód G, Majerek D, Franus M, Babko R. The effect of landscape on the diversity in urban green areas. Ecol Chem Eng S. 2017;24(4):613-25. DOI: 10.1515/eces-2017-0040.
  • [23] Emilsson T, Czemiel Berndtsson J, Mattsson JE, Rolf K. Effect of using conventional and controlled release fertilizer on nutrient runoff from various vegetated roof systems. Ecol Eng. 2007;29:260-71. DOI: 10.1016/j.ecoleng.2006.01.001.
  • [24] Schrader S, Böning M. Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans. Pedobiologia. 2006;50:347-56. DOI: 10.1016/j.pedobi.2006.06.003.
  • [25] Czemiel-Berndtsson J, Emilsson T, Bengtsson L. The influence of extensive vegetated roofs on runoff water quality. Sci Total Environ. 2006;355:48-63. DOI: 10.1016/j.scitotenv.2005.02.035.
  • [26] Bengtsson L, Grahn L, Olsson J. Hydrological function of a thin extensive green roof in southern Sweden. Nord Hydrol. 2005;36(3):259-68. http://hr.iwaponline.com/content/36/3/259.
  • [27] Akther M, He J, Chu A, Huang J, van Duin B. A review of green roof applications for managing urban stormwater in different climatic zones. Sustainability. 2018;10(8), 2864. DOI: 10.3390/su10082864.
  • [28] Getter KL, Rowe DB, Andresen JA. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol Eng. 2007;31:225-31. DOI: 10.1016/j.ecoleng.2007.06.004.
  • [29] Young T, Cameron DD, Sorrill J, Edwards T, Phoenix GK. Importance of different components of green roof substrate on plant growth and physiological performance. Urban Forestry Urban Greening. 2014;13(3):507-16. DOI: 10.1016/j.ufug.2014.04.007.
  • [30] Karczmarczyk A, Baryła A, Kożuchowski P. Design and development of low p-emission substrate for the protection of urban water bodies collecting green roof runoff. Sustainability. 2017;9:1795. DOI: 10.3390/su9101795.
  • [31] Farrell C, Ang XQ, Rayner JP. Water-retention additives increase plant available water in green roof substrates. Ecol Eng. 2013;52:112-8. DOI: 10.1016/j.ecoleng.2012.12.098.
  • [32] Savi T, Marin M, Boldrin D, Incerti G, Andri S, Nardini A. Green roofs for a drier world: Effects of hydrogel amendment on substrate and plant water status. Sci Total Environ. 2014;490:467-76. DOI: 10.1016/j.scitotenv.2014.05.020.
  • [33] Hüttermann A, Orikiriza LJB, Agaba H. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean - Soil Air Water. 2009;37(7):517-26. DOI: 10.1002/clen.200900048.
  • [34] Lejcuś K, Śpitalniak M, Dąbrowska J. Swelling behaviour of superabsorbent polymers for soil amendment under different loads. Polymers. 2018;10(3):271. DOI: 10.3390/polym10030271.
  • [35] Deska I, Mrowiec M, Ociepa E, Łacisz K. Investigation of the influence of hydrogel amendment on the retention capacities of green roofs. Ecol Chem Eng S. 2018;25(3):373-82. DOI: 10.1515/eces-2018-0025.
  • [36] Kotowski A, Kaźmierczak B. Sizing and modeling of the sewage system in the city of Wroclaw. Ecol Chem Eng S. 2013;20(1):163-76. DOI: 10.2478/eces-2013-0013.
  • [37] Licznar P, Siekanowicz-Grochowina K, Oktawiec M, Kotowski A, Burszta-Adamiak E. Empiryczna weryfikacja formuły Błaszczyka do obliczania wartości natężenia deszczu miarodajnego (Empirical Verification of Blaszczyk’s Formula for Design Rainfall Intensity Calculations). Ochr Środ. 2018;40(2):17-22. Available from: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-930afaf0-5b8c-44aa-9954-af41073bc68f.
  • [38] Razzaghmanesh M, Beecham S. The hydrological behaviour of extensive and intensive green roofs in a dry climate. Sci Total Environ. 2014;499:284-96. DOI: 10.1016/j.scitotenv.2014.08.046.
  • [39] Schultz I, Sailor DJ, Starry O. Effects of substrate depth and precipitation characteristics on stormwater retention by two green roofs in Portland OR. J Hydrol Reg Stud. 2018;18:110-8. DOI: 10.1016/j.ejrh.2018.06.008.
  • [40] Baryła A, Karczmarczyk A, Bus A, Hewelke E. Influence of environmental factors on retention of extensive green roofs with different substrate composition. E3S Web Conf. 2019;86:00026. DOI: 10.1051/e3sconf/20198600026.
  • [41] Baryła AM. Role of drainage layer on green roofs in limiting the runoff of rainwater from urbanized areas. J Water Land Dev. 2019;41(IV-VI):12-8. DOI: 10.2478/jwld-2019-0022.
  • [42] Elliott RM, Gibson RA, Carson TB, Marasco DE, Culligan PJ, McGillis WR. Green roof seasonal variation: comparison of the hydrologic behavior of a thick and a thin extensive system in New York City. Environ Res Lett. 2016;11:074020. DOI: 10.1088/1748-9326/11/7/074020.
  • [43] Burszta-Adamiak E, Stańczyk J, Łomotowski J. Hydrological performance of green roofs in the context of the meteorological factors during the 5-year monitoring period. Water Environ J. 2019;33:144-54. DOI: 10.1111/wej.12385.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9a9d70d-9085-4ca6-9b3d-d6b7a944b7b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.