PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of methylamine cations on kaolinite basal surfaces : A DFT study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To explore the interaction of alkylamine surfactants with kaolinite, the density functional theory (DFT) method was used to calculate the single adsorption of different methylamine cation on kaolinite basal surfaces and the competitive adsorption of methylamine cation and water molecule on kaolinite basal surfaces, respectively. Different methylamine cations can adsorb on kaolinite basal surfaces by electrostatic interaction and hydrogen bonds, and the methylamine cations more easily adsorbed on kaolinite Si-O surface. In the case of competitive adsorption with water molecule, the methylamine cation is capable of flushing out the surrounding water molecule to get rid of its steric effect and stably adsorbing on kaolinite basal surfaces, and the adsorption state of the competitive adsorption system is more stable. The adsorption mechanism of methylamine cation on kaolinite basal surface should be the result of electrostatic interaction and hydrogen bonds, and the electrostatic interaction plays the main role.
Rocznik
Strony
338--349
Opis fizyczny
Bibliogr. 47 poz., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan 232001, China
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
  • Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, Xuzhou 221116, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan 232001, China
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan 232001, China
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
Bibliografia
  • BERGAYA, F., LAGALY, G., 2013. Chapter 1-general introduction: clays, clay minerals, and clay science. in: Faïza, B., Gerhard, L. (Eds.), Developments in Clay Science, vol. 5, Elsevier.
  • CHEN, J.H., 2015. The solide physics of sulphide minerals flotation. Central South University Press: Hunan, 61-62.
  • CHEN, J., 2017. Characteristics and mechanism research on hydrophobic aggregation of fine particles in high muddied coal slurry water. Anhui University of Science and Technology,96-102.
  • CHEN, J., MIN, F., LIU, L., CAI, C., 2020. Systematic exploration of the interactions between Fe-doped kaolinite and coal based on DFT calculations. Fuel. 266,117082.
  • CHEN, J., MIN, F., LIU, L., 2019a. The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations. Appl. Surf. Sci. 467-468,12-21.
  • CHEN, J., MIN, F., LIU, L., LIU, C., 2019b. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Appl. Surf. Sci. 476,6-15.
  • CHEN, J., MIN, F., LIU, L., LIU, C., LU, F., 2017. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite. Appl. Surf. Sci. 419,241-251.
  • CHEN, J., MIN, F., LIU, L., PENG, C., LU, F., 2016. Hydrophobic aggregation of fine particles in high muddied coal slurry water. Water Sci. Technol. 73, 501-510.
  • CLARK, S.J., SEGALL, M.D., PICKARD, C.J., HASNIP, P.J., PROBERT, M.I.J., REFSON, K., PAYNE, M.C., 2005. First principles methods using CASTEP. Z. Kristallogr. 220,567-570.
  • GEATCHES, D.L., CLARK, S.J., GREENWELL, H.C., 2013. DFT+U investigation of the catalytic properties of ferruginous clay. Am. Mineral. 98,132-140.
  • GEATCHES, D.L., JACQUET, A., CLARK, S.J., GREENWELL, H.C., 2012. Monomer Adsorption on Kaolinite: Modeling the Essential Ingredients. J. Phys. Chem. C, 116,22365-22374.
  • GIBSONA, B., WONYENA, D.G., CHEHREH, C.S., 2017. A review of pretreatment of diasporic bauxite ores by flotation separation. Miner. Eng.114,64-73.
  • HAN, Y., LIU, W., CHEN, J., 2016. DFT simulation of the adsorption of sodium silicate species on kaolinite basal surfaces. Appl. Surf. Sci. 370,403-409.
  • HUANG, Q., LI, X., REN, S., LUO, W., 2019. Removal of ethyl, isobutyl, and isoamyl xanthates using cationic gemini surfactant-modified montmorillonites. Colloids Surf. A. 580,123723.
  • HU, Y., LIU, L., MIN, F., ZHANG, M., SONG, S., 2013. Hydrophobic aggregation of colloidal kaolinite in aqueous suspensions with dodecylamine. Colloid. Surface, A. 434,281-286.
  • JELDRES R.I., URIBE, L., CISTERNAS, L.A., GUTIERREZ, L., LEIVA, W.H., VALENZUELA, J., 2019. The effect of clay minerals on the process of flotation of copper ores: A critical review. Appl. Clay. Sci. 170,57-69.
  • JIANG, H., SUN, Z., LONG, H., HU, Y., HUANG, K., ZHU, S., 2014. A comparison study of the flotation and adsorption behaviors of diaspore and kaolinite with quaternary ammonium collectors. Miner. Eng. 65, 124-129.
  • LEE, K.E., MORAD, N., POH, B.T., TENG, T.T., 2011. Comparative study on the effectiveness of hydrophobically modified cationic polyacrylamide groups in the flocculation of kaolin. Desalination. 270, 206-213.
  • LIU, L., MIN, F., CHEN, J., LU, F., SHEN, L., 2019. The adsorption of dodecylamine and oleic acid on kaolinite basal surfaces: Insights from DFT calculation and experimental investigation. Appl. Surf. Sci. 470, 27-35.
  • LIU, S., CHEN, X., LAUTEN, R.A., PENGA, Y., LIU, Q., 2018. Mitigating the negative effects of clay minerals on gold flotation by a lignosulfonate-based biopolymer. Miner. Eng. 126,9-15.
  • LIU, D., EDRAKI M., BERRY L., 2018. Investigating the settling behavior of saline tailing suspensions using kaolinite, bentonite, and illite clay minerals. Powder Technol.326,228-236.
  • MABUDI, A., NOAPARAST, M., GHARABAGHI, M., VASQUEZ, V.R., 2019. Polystyrene nanoparticles as a flotation collector: A molecular dynamics study. J. Mol. Liq. 275,554-566.
  • MIN, F., PENG, C., SONG, S., 2014. Hydration layers on clay mineral surfaces in aqueous solutions: A review. Arch. Min. Sci. 59,373-384.
  • MIN F., REN B., CHEN J., LIU, C., PENG, C., 2020. Mechanism and experimental study on promoting coal slime dewatering based on weakening of hydration layer. J.China Coal Soc. 45(1),368 - 376
  • PENDHARKER, S., SHENDE, S., JACOB, Z., NAZEMIFARD, N., 2017. Three-dimensional optical tomography of bitumen and clay association in oil sands tailings. Fuel. 207,262-267.
  • PENG, C., ZHONG, Y., MIN, F., 2018. Adsorption of alkylamine cations on montmorillonite Al-OH surface: A density functional theory study. Appl. Clay. Sci. 152,249-258.
  • PERDEW, J.P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77,3865-3868.
  • RATH, S.S., SAHOO, H., DAS, B., MISHRA, B.K., 2014. Density functional calculations of amines on the (101) face of quartz. Miner. Eng. 69,57-64.
  • RODRIGUES, O.M.S., PERES, A.E.C., MARTINS, A.H., PEREIRA, C.A., 2013. Kaolinite and hematite flotation separation using etheramine and ammonium quaternary salts. Miner. Eng. 40,12-15.
  • SEGALL, M.D., LINDAN, P.J.D., PROBERT, M.J., PICKARD, C.J., HASNIP, P.J., CLARK, S.J., PAYNE, M.C., 2002. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14, 2717-2744.
  • SARVARAMINI, A., LARACHI, F., 2017. Understanding the interactions of thiophosphorus collectors with chalcopyrite through DFT simulation. Comput. Mater. Sci. 132,137-145.
  • SHEN, L., ZHU, J., LIU, L., WANG, H., 2017. Flotation of fine kaolinite using dodecylamine chloride/fatty acids mixture as collector. Powder Technol. 312,159-165.
  • ŠOLC, R., GERZABEK, M.H., LISCHKA, H., TUNEGA D., 2011. Wettability of kaolinite basal surfaces - Molecular dynamic study. Geoderma. 169,47-54.
  • WANG, X., HUANG, Y., PAN, Z., WANG, Y., LIU, C., 2015. Theoretical investigation of lead vapor adsorption on kaolinite basal surfaces with DFT calculations. J. Hazard. Mater. 295,43-54.
  • WANG, X., QIAN, P., SONG, K., ZHANG, C., DONG, J., 2013. The DFT study of adsorption of 2,4-dinitrotoluene on kaolinite basal surfaces. Comput. Theor. Chem. 1025,16-23.
  • WANG, L., HU, Y., SUN, W., SUN, Y., 2015. Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite. Appl. Surf. Sci. 327,364-370.
  • XIA Y., YANG Z., ZHANG R., XING Y., GUI X., 2019a. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study. Fuel.239,145-152.
  • XIA, Y., ZHANG, R., XING, Y., GUI, X., 2019b. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface. Fuel. 235,687-695.
  • XING Y., XU X., GUI X., CAO Y., XU M., 2017. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel. 195,284-289.
  • XIONG, F., JIANG, Z., LI, P., WANG, X., BI, H., LI, Y., WANG, Z., AMOOIE, M.A., SOLTANIAN, M.R., MOORTGAT, J., 2017. Pore structure of transitional shales in the Ordos Basin, NW China: effects of composition on gas storage capacity. Fuel. 206,504-515.
  • YU Y., MA L., CAO M., LIU Q., 2017. Slime coatings in froth flotation: A review. Miner. Eng. 114,26-36.
  • ZHANG, G., AI-SAIDI, W.A., MYSHAKIN, E.M., JORDAN, K.D., 2012. Dispersion-Corrected DFT and classical force field calculations of water loading on a clay surface. J. Phys. Chem. C. 116,17134-17141.
  • ZHANG, N., EJTEMAEI, M., NGUYEN, A.V., ZHOU, C., 2019. XPS analysis of the surface chemistry of sulfuric acid- treated kaolinite and diaspore minerals with flotation reagents. Miner. Eng. 136,1-7.
  • ZHAO, H., LI, Y., SONG, Q., LIU, S., MA, Q., MA, L., SHU, X., 2019a. Catalytic reforming of volatiles fromco-pyrolysis of lignite blended with corn straw over three different structures of iron ores. J. Anal. Appl. Pyrol. 144:104714.
  • ZHAO, H., LI, Y., SONG, Q., LIU, S., YAN, J., MA, Q., MA, L., SHU, X., 2019b. Investigation on the thermal behavior characteristics and products composition of four pulverized coals: Its potential applications in coal cleaning. Int. J. Hydrogen Energy. 44,23620–23638.
  • ZHAO, H., SONG, Q., LIU, S., LI, Y., WANG, X., SHU, X., 2018. Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism. Energy Convers. Manage. 161,13–26.
  • VAZ, C.M.P., HERRMANN, P.S.P., CRESTANA, S., 2002. Thickness and size distribution of clay-sized soil particles measured through atomic force microscopy. Powder Technol. 126,51-58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9a33a14-b726-4785-b507-e5dbd8839ee0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.