PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.
Rocznik
Strony
601--617
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
  • Research and Development Group, Uav4africa (Pty) Ltd, 1 Cadogan Rd, Johannesburg, 2090, South Africa
  • School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg, WITS2050, South Africa
Bibliografia
  • [1] Almutairi, S.H. (2016). Optimal Fault-Tolerant Flight Control for Aircraft with Actuation Impairments, PhD thesis, Cranfield University, Cranfield.
  • [2] Åström, K.J. (1998). Control systems with friction, Proceedings of the 4th International Conference on Motion and Vibration Control, Zurich, Switzerland, pp. 25–32.
  • [3] Brandt, J.B. and Selig, M.S. (2011). Propeller performance at low Reynolds numbers, 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, p. 1255.
  • [4] Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423–430, DOI: 10.2478/v10006-011-0031-0.
  • [5] Chen, X., Wang, D., Yin, J. and Jia, C. (2019). Augmented Lagrange geolocation algorithm using TDOA measurements and calibration sources in the presence of satellite position errors, AEU—International Journal of Electronics and Communications 111: 1–18.
  • [6] Fan, J., Zhang, Y. and Zheng, Z. (2013). Adaptive observer-based integrated fault diagnosis and fault-tolerant control systems against actuator faults and saturation, Journal of Dynamic Systems, Measurement, and Control 135(4): 041008.
  • [7] Gavrilets, V. (2003). Autonomous Aerobatic Maneuvering of Miniature Helicopters, PhD thesis, Massachusetts Institute of Technology, Cambridge.
  • [8] Gavrilets, V., Mettler, B. and Feron, E. (2004). Human-inspired control logic for automated maneuvering of miniature helicopter, Journal of Guidance, Control, and Dynamics 27(5): 752–759.
  • [9] Ji, H. (2021). Statistics Mahalanobis distance for incipient sensor fault detection and diagnosis, Chemical Engineering Science 230: 116233.
  • [10] Kantue, P. and Pedro, J.O. (2018a). Grey-box modelling of an unmanned quadcopter during aggressive maneuvers, International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 640–645.
  • [11] Kantue, P. and Pedro, J.O. (2018b). Nonlinear identification of an unmanned quadcopter rotor dynamics using RBF neural networks, International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 292–298.
  • [12] Kantue, P. and Pedro, J.O. (2019). Real-time identification of faulty systems: Development of an aerial platform with emulated rotor faults, 2019 4th Conference on Control and Fault Tolerant Systems (SysTol2019), Casablanca, Morocco, pp. 20–25.
  • [13] Kantue, P. and Pedro, J.O. (2020). Integrated fault detection and diagnosis of an unmanned aerial vehicle using time difference of arrival, International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 336–342.
  • [14] Krstic, M. and Wang, H.H. (2000). Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36(1): 595–601.
  • [15] Lan, J. and Patton, R.J. (2016). A new strategy for integration of fault estimation within fault-tolerant control, Automatica 69: 48–59.
  • [16] Lan, J., Patton, R.J. and Zhu, X. (2017). Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation, IET Control Theory and Applications 11(14): 2232–2241.
  • [17] Li, K., Peng, J.-x. and Irwin, G.W. (2005). A fast nonlinear model identification method, IEEE Transactions on Automatic Control 50(8): 1211–1216.
  • [18] Li, X., Lu, D., Zeng, G., Liu, J. and Zhang, W. (2017). Integrated fault estimation and non-fragile fault-tolerant control design for uncertain Takagi–Sugeno fuzzy systems with actuator fault and sensor fault, IET Control Theory and Applications 11(10): 1542–1553.
  • [19] Li, Y.-X. and Yang, G.-H. (2018). Adaptive integral sliding mode control fault tolerant control for a class of uncertain nonlinear systems, IET Control Theory and Applications 12(13): 1864–1872.
  • [20] Liu, L., Shen, Y. and Dowell, E.H. (2012). Integrated adaptive fault-tolerant H-infinity output feedback control with adaptive fault identification, Journal of Guidance, Control, and Dynamics 35(3): 881–889.
  • [21] Liu, L., Yu, Z. and Zhu, C. (2015). Integrated active fault-tolerant H-infinity control by designing an auxiliary self-examination plant, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, Hong Kong, China, pp. 234–239.
  • [22] Liu, Y. and Yang, G.H. (2019). Integrated design of fault estimation and fault-tolerant control for linear multi-agent systems using relative outputs, Neurocomputing 329: 468–475.
  • [23] Marcos, A. and Balas, G.J. (2005). A robust integrated controller/diagnosis aircraft application, International Journal of Robust and Nonlinear Control 15(12): 531–551.
  • [24] Mettler, B. and Kanade, T. (2000). System identification modeling of a model-scale helicopter, Robotics 17(6): 1–25.
  • [25] Mien, V., Kang, H.J. and Ro, Y.S. (2011). A robust detection and isolation scheme for incipient and abrupt faults in robot manipulator using neural network, Proceedings of the 6th International Forum on Strategic Technology, IFOST 2011, Harbin, China, pp. 313–316.
  • [26] Nett, C.N., Jacobson, C.A. and Miller, A.T. (1988). An integrated approach to controls and diagnostics: The 4-parameter controller, 1988 American Control Conference, Atlanta, USA, pp. 824–835.
  • [27] Pedro, J.O. and Kantue, P. (2011). Online aerodynamic parameter estimation of a miniature unmanned helicopter using radial basis function neural networks, 8th Asian Control Conference, Kaohsiung, Taiwan, pp. 1170–1175.
  • [28] Peng, J.-x., Li, K. and Irwin, G.W. (2007). A novel continuous forward algorithm for RBF neural modelling, IEEE Transactions on Automatic Control 52(1): 117–122.
  • [29] Prochazka, K.F., Eduardo, H. and Klein, S.R. (2018). Integrated fault-tolerant control of an over-actuated aircraft using optimal control allocation and robust sliding mode observers, IEEE Conference on Control Technology and Applications, Copenhagen, Denmark, pp. 171–178.
  • [30] Rudin, K., Ducard, G.J.J. and Siegwart, R.Y. (2020). Active fault tolerant control with imperfect fault detection information: Applications to UAVs, IEEE Transactions on Aerospace and Electronic Systems 56(4): 2792–2805.
  • [31] Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
  • [32] Shen, Q., Jiang, B. and Shi, P. (2017). Adaptive fault tolerant control against actuator faults, International Journal of Adaptive Control and Signal Processing 31(2): 147–162.
  • [33] Shen, Q., Jiang, B., Shi, P. and Lim, C.C. (2014). Novel neural networks-based fault tolerant control scheme with fault alarm, IEEE Transactions on Cybernetics 44(11): 2190–2201.
  • [34] Stoustrup, J., Grimble, M. and Niemann, H. (1997). Design of integrated systems for the control and detection of actuator/sensor faults, Sensor Reviews 17(2): 138–149.
  • [35] Wang, L., Chen, S. and Ma, K. (2016). On stability and application of extremum seeking control without steady-state oscillation, Automatica 68: 18–26.
  • [36] Wu, C., Qi, J., Song, D., Qi, X. and Han, J. (2015). Simultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter, International Journal of Applied Mathematics and Computer Science 25(1): 175–187, DOI: 10.1515/amcs-2015-0013.
  • [37] Xulin, L. and Yuying, G. (2018). Fault tolerant control of a quadrotor UAV using control allocation, Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, Shenyang, China, pp. 1818–1824.
  • [38] Yan, K., Chen, M., Wu, Q. and Jiang, B. (2019). Extended state observer-based sliding mode fault-tolerant control for unmanned autonomous helicopter with wind gusts, IET Control Theory and Applications 13(10): 1500–1513.
  • [39] Yang, J. and Delpha, C. (2022). An incipient fault diagnosis methodology using local Mahalanobis distance: Detection process based on empirical probability density estimation, Signal Processing 190: 1–13.
  • [40] Yang, Y., Niu, Y. and Zhang, Z. (2020). Adaptive fuzzy fault-tolerant control for nonlinear systems under actuator and sensor faults: The practical fixed-time stability, IET Control Theory and Applications 14(19): 3291–3300.
  • [41] Yin, C., Dadras, S., Huang, X., Cheng, Y. and Malek, H. (2018). The design and performance analysis of multivariate fractional-order gradient-based extremum seeking approach, Applied Mathematical Modelling 62: 680–700.
  • [42] Yu, X. and Jiang, J. (2015). A survey of fault-tolerant controllers based on safety-related issues, Annual Reviews in Control 39: 46–57.
  • [43] Yu, X., Liu, Z. and Zhang, Y. (2017). Fault-tolerant flight control design with finite-time adaptation under actuator stuck failures, IEEE Transactions on Control Systems Technology 25(4): 1431–1440.
  • [44] Zhang, Y., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J. and Gosselin, P. (2013). Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed, Journal of the Franklin Institute 350(9): 2396–2422.
  • [45] Zhang, Y. and Jiang, J. (1999). Design of integrated fault detection, diagnosis and reconfigurable control systems, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, USA, Vol. 4, pp. 3587–3592.
  • [46] Zhang, Y. and Jiang, J. (2001). Integrated active fault-tolerant control using IMM approach, IEEE Transactions on Aerospace and Electronic Systems 37(4): 1221–1235.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e99f0d26-2842-40ac-a97a-c36c231e0599
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.