Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article focuses on discussing the adsorption process of phenol and its chloro-derivatives on the HDTMA-modified halloysite. Optimized chemical structures of phenol, 2-, 3-, 4-chlorophenol, 2,4-dichloro-, and 2,4,6-trichlorophenol were obtained with computational calculation (the Scigress program). Charge distributions and the hypothetical structure of the system HDTMA-modified halloysite are among their key features. The above-mentioned calculations are applied in order to explain adsorption mechanism details of chlorophenols on the HDTMA-modified halloysite in aqueous solutions. The results of electron density distribution and solvent accessible surface area calculations for phenol and chlorophenols molecules illustrate the impact of chlorine substitution position in a phenol molecule, both on the mechanism and the kinetics of their adsorption in aqueous solutions. Experimental adsorption data were sufficiently represented using the Langmuir multi-center adsorption model for all adsorbates. In addition, the relations between adsorption isotherm parameters and the adsorbate properties were discussed. This study also targets at explaining the role of meta position as a chlorine substituent for mono-chloro derivatives. Given the above findings, two possible mechanisms were utilized as regards chlorophenol adsorption on the HDTMA-modified halloysite, i.e., electrostatic and partition interactions when the chlorophenols exist in a molecular form.
Czasopismo
Rocznik
Tom
Strony
66--75
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
autor
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
autor
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
autor
- Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Bibliografia
- 1. Ali, I., Asim M. & Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170. DOI:10.1016/j.jenvman.2012.08.028
- 2. Berland, K., Cooper, V.R., Lee, K., Schröder, E., Thonhauser, T., Hyldgaard, P. & Lundqvist, B. I. (2015). Van der Waals forces in density functional theory: A review of the vdW-DF method. Rep. Prog. Phys. 78, 066501. DOI:10.1088/0034-4885/78/6/066501
- 3. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak A. (2021). New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review. Arch. Environ. Protect. 47, pp. 3–27. DOI:10.24425/aep.2021.138460
- 4. Cavallaro, G. Lazzara, G. Milioto, S. & Parisi, F. (2015). Hydrophobically Modified Halloysite Nanotubes as reverse Micelles for Water-in-Oil Emulsion. Langmuir 31, 7472–8. DOI:10.1021/acs.langmuir.5b01181
- 5. Chen, C., Geng, X. & Huang W. (2017). Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chem. Eng. J. 327, 941. DOI:10.1016/j.cej.2017.06.183
- 6. Cruz-Guzmán, M., Celis, R., Hermosín, M.C., Koskinen, W.C. & Cornejo, J. (2005). Adsorption of pesticides from water by functionalized organobentonites. J. Agric. Food. Chem. 53, pp. 7502–7511. DOI:10.1021/jf058048p
- 7. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21. DOI:10.1016/j.scitotenv.2003.09.015
- 8. Czaplicka M. & Czaplicki, A. (2006). Photodegradation of 2,3,4,5-tetrachlorophenol in water/methanol mixture. J. Photochem. Photobiol. A 178, 90. DOI:10.1016/j.jphotochem.2005.07.005
- 9. Damjanović, L., Rakić, V., Rac, V., Stošić, D. & Auroux, A. (2010). The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J. Hazard. Mater. 184, 477. DOI:10.1016/j.jhazmat.2010.08.059
- 10. Djebbar, M., Djafri, F., Bouchekara, M. & Djafri, A. (2012). Adsorption of phenol on natural clay. Appl. Water Sci. 2, 77. Doi: 10.1007/s13201-012-0031-8
- 11. Garba, Z.N., Zhou, W., Lawan, I., Xiao, W., Zhang, M., Wang, L., Chen, L. & Yuan Z. (2019). An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J. Environ. Manage. 241, 59. DOI:10.1016/j.jenvman.2019.04.004.
- 12. Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787. DOI:10.1002/jcc.20495
- 13. Honda, M. & Kannan, K. (2018). Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ. Pollut. 232, 487. DOI:10.1016/j.envpol.2017.09.073
- 14. Hu, X., B. Wang, Yan, G. & Ge B. (2012). Simultaneous removal of phenol and Cu(II) from wastewater by tallow dihydroxyethyl betaine modified bentonite. Arch. Environ. Protect. 48, pp. 37–47. DOI:10.24425/aep.2022.142688
- 15. Huang, J., Jin, X. & Deng, S. (2012). Phenol adsorption on an N-methylacemetamide-modified hypercrosslinked resin from aqueous solutions. Chem. Eng. J. 192, 192. DOI:10.1016/j.cej.2012.03.078
- 16. Issabayeva, G., Hang, S.Y., Wong M.C. & Aroua, M. K. (2018). A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Rev. Chem. Eng. 34, pp. 855–873. DOI:10.1515/revce-2017-0007
- 17. Joussein, E., Petit, S., Churchman, G. J., Theng, B. K. G., Righi, D. & Delvaux, B. (2005). Halloysite clay minerals: a review. Clay Clay Miner. 40, 383. DOI:10.1180/0009855054040180
- 18. Lin, S.S., Chang, D.J., Wang, C.H. & Chen, C.C. (2003). Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions. Water Res. 37, pp. 793–800. DOI:10.1016/s0043-1354(02)00422-0
- 19. Madannejad, S., Rashidi, A., Sadeghhassani, S., Shemirani, F. & Ghasemy, E. (2018) Removal of 4-chlorophenol from water using different carbon nanostructures: a comparison study. J. Mol. Liq. 249, 877. DOI:10.1016/j.molliq.2017.11.089
- 20. Majlesi, M. & Hashempour Y. (2017). Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling. Arch. Environ. Protect. 43, pp. 13–25. DOI:10.1515/aep-2017-0035
- 21. Nafees, M. & Waseem, A. (2014). Organoclays as Sorbent Material for Phenolic Compounds: A Review. Clean – Soil, Air, Water 41, pp. 1-9. DOI:10.1002/clen.201300312
- 22. Ocampo-Perez, R., Leyva-Ramos, R., Mendoza-Barron, J. & Guerrero-Coronado, R. M. (2011). Adsorption rate of phenol from aqueous solution onto organobentonite: Surface diffusion and kinetic models. J. Colloid Interf. Sci. 364, 195. DOI:10.1016/j.jcis.2011.08.032
- 23. Pandey, G., Munguambe, D. M., Tharmavaram, M., Rawtani, D. & Agrawal, Y.K. (2017). Halloysite nanotubes - An efficient "nano-support" for the immobilization of α-amylase. App. Clay Sci. 136, pp. 184–191. DOI:10.1016/j.clay.2016.11.034
- 24. Pandey, G., Tharmavaram, M., Khatri, N. & Rawtani, D. (2022). Mesoporous halloysite nanotubes as nano-support system for cationic dyes: An equilibrium, kinetic and thermodynamic study for latent fingerprinting. Micropor. Mesopor. Mat. 346, 112288. DOI:10.1016/j.micromeso.2022.112288
- 25. Pandey, G., Tharmavaram, M., Phadke, G., Rawtani, D., Ranjan, M. & Sooraj K.P. (2022). Silanized halloysite nanotubes as "nano-platform" for the complexation and removal of Fe(II) and Fe(III) ions from aqueous environment. Sep. Purif. Technol. 29, 121141. DOI:10.1016/j.seppur.2022.121141
- 26. Park, Y., Ayoko, G.A., Kurdi, R., Horváth, E., Kristóf, J. & Frost, R.L. (2013). Adsorption of phenolic compounds by organoclays: Implications for the removal of organic pollutants from aqueous media, J. Colloid Interf. Sci. 406, 196. DOI:10.1016/j.jcis.2013.05.027
- 27. Pasbakhsh, P.. Churchman, G.J. & Keeling, J.L. (2013). Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 74, 47. DOI:10.1016/j.clay.2012.06.014
- 28. Paul, D.R., Zeng, Q.H., Yu, A.B. & Lu, G.Q. (2005). The interlayer swelling and molecular packing in organoclays, J. Colloid Interface Sci. 292, pp. 462–468. DOI:10.1016/j.jcis.2005.06.024
- 29. Qiu, X., Li, N., Ma, X., Yang, S., Xu, Q., Li, H. & Lu, J. (2014). Facile preparation of acrylic ester-based crosslinked resin and its adsorption of phenol at high concentration. J. Environ. Chem. Eng. 2, 745. DOI:10.1016/j.jece.2013.11.016
- 30. Raczyńska-Żak, M. PhD Thesis, supervisor P. Słomkiewicz, Kielce, Poland, 2018
- 31. Rawajfih, Z. & Nsour, N. (2006). Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J. Colloid Interface Sci. 298, pp. 39–49. DOI:10.1016/j.jcis.2005.11.063
- 32. Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G.S.M., Rajarathnam, D. & Naidu, R. (2010). Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J. Hazard. Mater. 183, 87. DOI:10.1016/j.jhazmat.2010.06.110
- 33. Setter, O. P., Dahan, L., Hamad, H. A. & Segal, E. (2022). Acid-etched Halloysite nanotubes as superior carriers for ciprofloxacin. App. Clay Sci. 228, 106629. DOI:10.1016/j.clay.2022.106629
- 34. Sinha, B,. Ghosh, U.K., Pradhan, N.C. & Adhikari, B. (2006). Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes. J. Appl. Polym. Sci. 10, pp. 1857–1865. DOI:10.1002/app.23566
- 35. Słomkiewicz, P., Szczepanik, B. & Czaplicka, M. (2020). Adsorption of Phenol and Chlorophenols by HDTMA Modified Halloysite Nanotubes, Materials 13, 3309 DOI:10.3390/ma13153309
- 36. Smith, J.A. & Galan, A. (1995). Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environ. Sci. Technol. 29, pp. 685–692. DOI:10.1021/es00003a016
- 37. Su, J., Lin, H.-F., Wang, Q.-P., Xie, Z.M. & Chen, Z.L. (2011). Adsorption of phenol from aqueous solutions by organomontmorillonite, Desalination, 269, 163. DOI:10.1016/j.desal.2010.10.056
- 38. Tamijani, A.A., Salam, A. & de Lara-Castells, M. P. (2016). Adsorption of Noble-Gas Atoms on the TiO2(110) Surface: An Ab Initio-Assisted Study with van der Waals-Corrected DFT. J. Phys. Chem. C. 120, 18126. DOI:10.1021/acs.jpcc.6b05949
- 39. Tana, D., Yuan, P., Liu, D. & Du, P. Modifications of Halloysite, Chapter 8 in Developments in Clay Science, December 2016
- 40. Tharmavaram, M., Pandey, G. & Rawtani, D. (2018). Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Adv. Colloid Interface Sci. 261, 82–101. DOI:10.1016/j.cis.2018.09.001
- 41. Tharmavaram, M., Pandey, G., Bhatt, P., Prajapati, P., Rawtani, D., Sooraj, K.P. & Ranjan, M. (2021). Chitosan functionalized Halloysite Nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment. Int. J. Biol. Macromol. 191, pp. 1046–1055. DOI:10.1016/j.ijbiomac.2021.09.098
- 42. Tharmavaram, M., Pandey, G., Khatri, N. & Rawtani, D. (2023). L-arginine-grafted halloysite nanotubes as a sustainable excipient for antifouling composite coating. Mater. Chem. Phys. 293, 126937. DOI:10.1016/j.matchemphys.2022.126937
- 43. Wu, J. & Yu, H.Q. (2006). Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics. J. Hazard. Mater. 137, pp. 498–508. DOI:10.1016/j.jhazmat.2006.02.026
- 44. Xie, J., Meng, W., Wu, D., Zhang, Z. & Kong, H. (2012). Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non‐ionizable organic compounds. J. Hazard. Mater. 231, 57. DOI:10.1016/j.jhazmat.2012.06.035
- 45. Yang, Q., Gao, M. & Zang, W. (2017). Comparative study of 2,4,6-trichlorophenol adsorption by montmorillonites functionalized with surfactants differing in the number of head group and alkyl chain. Colloid. Surf. Physicochem. Eng. Asp. 520, 805. DOI:10.1016/j.colsurfa.2017.02.057
- 46. Yousef, R.I. & El-Eswed B. (2009). The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloid Surf. A 334, pp. 92–99. DOI:10.1016/j.colsurfa.2008.10.004
- 47. Yu, J.-Y., Shin, M.Y., Noh, J.-H. & Seo, J.J. (2004). Adsorption of phenol and chlorophenols on Ca-montmorillonite in aqueous. Geosci. J. 8, 185. DOI:10.1007/BF02910194
- 48. Yuan, G. (2004). Natural and modified nanomaterials as sorbents of environmental contaminants. J. Environ. Sci. Health. Part A 39, pp. 2661–2670. DOI:10.1081/ESE-200027022
- 49. Zhang, L., Zhang, B., Wu, T., Sun, D. & Li, Y. (2015). Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 484, 118. DOI:10.1016/j.colsurfa.2015.07.055
- 50. Zhou, Q., Frost, R.L., He, H., Xi, Y. & Zbik, M. (2007). TEM, XRD, and thermal stability of adsorbed paranitrophenol on DDOAB organoclay. J. Colloid Interface Sci. 311, pp. 24–37. DOI:10.1016/j.jcis.2007.02.039
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e99874af-7c65-4c4c-a5cf-ca082ee0bf4b