Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work presents the results of a research on the photoacoustic spectra of thin surface layers of Cd₁-xBexTe crystals formed by grinding and polishing their surfaces. As a result of matching the theoretical and experimental photoacoustic spectra, thermal and optical parameters of these layers were determined. Thermal parameters of the surface layers, such as thermal conductivity and thermal diffusivity, turned out to be much worse than the analogous parameters of the substrate. The increase in the optical absorption of surface layers for photon energies below Eg was also determined.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e150186
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Electronics and Computer Studies, Technical University of Koszalin, ul. Śniadeckich 2, Koszalin, Poland
autor
- Faculty of Electronics and Computer Studies, Technical University of Koszalin, ul. Śniadeckich 2, Koszalin, Poland
autor
- Faculty of Electronics and Computer Studies, Technical University of Koszalin, ul. Śniadeckich 2, Koszalin, Poland
autor
- Institute of Physics, Nicolaus Copernicus University, ul. Grudziądzka 5/7, 87-100 Torun, Poland
autor
- Institute of Physics, Nicolaus Copernicus University, ul. Grudziądzka 5/7, 87-100 Torun, Poland Article info
Bibliografia
- [1] Ghosh, A. K., Som, K. K., Chatterjee, S. & Chaudhuri, B. K. Photoacoustic spectroscopic study of energy gap, optical absorption, and thermal diffusivity of polycrystalline ZnSexTe1-x (0 < = x < =) alloys. Phys. Rev. B 51, 4842-4848 (1995). https://doi.org/10.1103/physrevb.51.4842.
- [2] Poulet, P., Chambron, J. & Unterreiner, R. Quantitative photoacoustic spectroscopy applied to thermally thick samples. J. Appl. Phys. 51, 1738-1742 (1980). https://doi.org/10.1063/1.327785.
- [3] Bychto, L. & Maliński, M. Determination of the optical absorption coefficient spectra of thin semiconductor layers from their photoacoustic spectra. Int. J. Thermophys. 39, 103 (2018). https://doi.org/10.1007/s10765-018-2424-x.
- [4] Bychto, L. & Malinski, M. Photoacoustic spectroscopy analysis of thin semiconductor samples. Opto-Electron. Rev. 26, 2017-222 (2018). https://doi.org/10.1016/J.OPELRE.2018.06.005.
- [5] Vigil-Galan, O. et al. A study of the optical absorption in CdTe by photoacoustic spectroscopy. J. Mater. Sci. 42, 7176-7179 (2007). https://doi.org/10.1007/S10853-006-1246-6.
- [6] Indrea, E., Deac, I., Barbu, A. & Filip, X. Characterization of laser deposited CdTe and Hg1-xCdxTe thin films. Appl. Surf. Sci. 106, 70-74 (1996). https://doi.org/10.1016/S0169-4332(96)00395-9.
- [7] Zegadi, A. et al. Photoacoustic spectroscopy of CuInSe2 thin films. Thin Solid Films 226, 248-253 (1993). https://doi.org/10.1016/0040-6090(93)90386-4.
- [8] Reddy, K. T. R., Slifkin, M. A. & Weiss, A. M. Study of the Optical Behavior of p-CuInSe2 Films by Photoacoustic Spectroscopy. in Electro-Optics and Microelectronics Proceedings (eds. Lavi, R. & Azoulay, E.) 137-141 (IOP Publishing Ltd, Bristol, 2000).
- [9] Ahmed, E. et al. Laser annealing of flash-evaporated CuInSe2 thin films. J. Mater. Eng. Perform. 15, 213-217 (2006). https://doi.org/10.1361/105994906X95904.
- [10] Ahmed, E. et al. Impact of annealing processes on the properties of CuIn0.75Ga0.25Se2 thin films. Sol. Energy Mater. Sol. Cells 36, 227-239 (1995). https://doi.org/10.1016/0927-0248(94)00175-8.
- [11] Ahmed, E. et al. Thermal annealing of flash evaporated Cu(In, Ga)Se2 thin films. J. Mater. Process. Technol. 77, 260-265 (1998). https://doi.org/10.1016/S0924-0136(97)00426-3.
- [12] Ahmed, E. et al. Effects of H+Ion Implantation and Annealing on The Properties of CuIn0.75Ga0.25Se2 Thin Films. J. Mater. Eng. Perform. 16, 119-122 (2007). https://doi.org/10.1007/s11665-006-9019-6.
- [13] Ahmed, E., Zegadi, A., Hill, A. E., Pilkington, R. D. & Tomlinson, R. D. Optical properties of flash-evaporated CuIn0.75Ga0.25Se2 thin films by photoacoustic spectroscopy. Thin Solid Films 268, 144-151 (1995). https://doi.org/10.1016/0040-6090(95)06811-2.
- [14] Reddy, K. R., Chalapathy, R. B., Slifkin, M. A., Weiß, A. W. & Miles, R. W. Photoacoustic spectroscopy of sprayed CuGaxIn1-xSe2 thin films. Thin Solid Films 387, 205-207 (2001). https://doi.org/10.1016/S0040-6090(00)01713-2.
- [15] Ahmed, E. et al. The influence of annealing processes on the structural, compositional and electro-optical properties of CuIn0.75Ga0.25Se2 thin films. J. Mater. Sci.: Mater. Electron. 7, 213-219 (1996). https://doi.org/10.1007/BF00133118.
- [16] Ahmed, E. et al. Transmission photoacoustic spectroscopy of flash-evaporated CuIn0.75Ga0.25Se2 thin films. Thin Solid Films 515, 239-244 (2006). https://doi.org/10.1016/J.TSF.2005.12.076.
- [17] Viktorov, I. A. et al. Investigation of CuInSe2 films by the method of photoacoustic spectroscopy. J. Appl. Spectrosc. 66, 659-663 (1999). https://doi.org/10.1007/BF02675406.
- [18] Ahmed, E. et al. Laser annealing of flash-evaporated CuInSe2 thin films. J. Mater. Eng Perform. 15, 213-217 (2006). https://doi.org/10.1361/105994906X95904.
- [19] Reddy, K. R., Slifkin, M. A. & Weiss, A. M. Characterization of inorganic materials with photoacoustic spectrophotometry. Opt. Mater. 16, 87-91 (2001). https://doi.org/10.1016/S0925-3467(00)00063-X.
- [20] Cardona-Bedoya, J. A., Gordillo-Delgado, F., Zelaya-Angel, O., Cruz-Orea, A. & Mendoza-Alvarez, J. G. Growth and characteri-zation of GaInNxAs1-x thin films with band-gap energies in the red-blue portion of the visible spectrum. Appl. Phys. Lett. 80, 1900-1902 (2002). https://doi.org/10.1063/1.1454209.
- [21] Mayén-Hernández, S. A. et al. CdO+CdTiO3 thin films prepared by sol-gel. Sol. Energy Mater. Sol. Cells 90, 2280-2288 (2006). https://doi.org/10.1016/J.SOLMAT.2006.03.001.
- [22] Mayén-Hernández, S. A., Torres-Delgado, G., Castanedo-Pérez, R., Mendoza-Álvarez, J. G. & Zelaya-Ángel, O. Optical and structural properties of CdO+CdTiO3 thin films prepared by sol–gel. Mater. Chem. Phys. 115, 530-535 (2009). https://doi.org/10.1016/J.MATCHEMPHYS.2008.11.046.
- [23] Shen, Q., Yuichiro Kato, Y. K. & Taro Toyoda, T. T. Photoacoustic and photoluminescence studies of CdSxSe1-x doped glasses. Jpn. J. Appl. Phys. 36, 3297 (1997). https://doi.org/10.1143/JJAP.36.3297.
- [24] Zakrzewski, J. et al. Photothermal investigation of surface defects of pure semiconducting A2B6 materials. Int. J. Thermophys. 33, 733-740 (2012). https://doi.org/10.1007/s10765-012-1199-8.
- [25] Strzałkowski, K., Kulesza, S., Zakrzewski, J. & Malinski, M. Surface investigations of ZnBeMnSe mixed crystals by means of the piezoelectric spectroscopy and the AFM technique. Appl. Surf. Sci. 290, 27-34 (2014). https://doi.org/10.1016/J.APSUSC.2013.10.180.
- [26] Zakrzewski, J., Strzałkowski, K., Malinski, M. & Chrobak, Ł. Two-layer model in piezoelectric photothermal spectra of CdTe Crystals. Int. J. Thermophys. 40, 1-10 (2019). https://doi.org/10.1007/S10765-019-2521-5.
- [27] Maliński M. & Bychto L. The Influence of The Quality of CdTe Surface on The Photoacoustic Characteristics. in 28th German Annual Conference on Acoustics DAGA 2002 432-433 (German Acoustic Society, 2002). http://pub.dega-akustik.de/DAGA_1999-2008/data/articles/000748.pdf.
- [28] Bychto L. & Maliński M. The Influence of The Quality of Semiconductor Surface on The Photoacoustic Signal Characteristics on The Example of CdTe studies. in 5th International Workshop on Thermal Investigations of ICs and Microstructures (THERMINIC 1999) 231-235 (IEEE, 1999).
- [29] Malinski, M., Bychto, L., Łȩgowski, S., Szatkowski, J. & Zakrzewski, J. Photoacoustic studies of Zn1-xBexSe mixed crystals: two-layer approach. Microelectron. J. 32, 903-910 (2001). https://doi.org/10.1016/S0026-2692(01)00080-5.
- [30] Aqariden, F. et al. Influence of surface polishing on the structural and electronic properties of CdZnTe surfaces. J. Electron. Mater. 41, 2893-2898 (2012). https://doi.org/10.1007/s11664-012-2126-2.
- [31] Zheng, Q. et al. Influence of surface preparation on CdZnTe nuclear radiation detectors. Appl. Surf. Sci. 257, 8742-8746 (2011). https://doi.org/10.1016/J.APSUSC.2011.05.098.
- [32] Tari, S. et al. Impact of surface treatment on the structural and electronic properties of polished CdZnTe surfaces for radiation detectors. J. Electron. Mater. 42, 3252-3258 (2013). https://doi.org/10.1007/s11664-013-2649-1.
- [33] Hossain, A. et al. Novel approach to surface processing for improving the efficiency of CdZnTe detectors. J. Electron. Mater. 43, 2771-2777 (2014). https://doi.org/10.1007/s11664-013-2698-5.
- [34] Malinski, M. & Chrobak, Ł. Numerical analysis of the photoacoustic spectra of silicon samples with differently treated surfaces. Opt. Commun. 283, 1004-1007 (2010). https://doi.org/10.1016/J.OPTCOM.2009.11.029.
- [35] Maliński, M. & Chrobak, Ł. Numerical analysis of absorption and transmission photoacoustic spectra of silicon samples with differently treated surfaces. Opto-Electron. Rev. 19, 46-50 (2011). https://doi.org/10.2478/s11772-010-0064-1.
- [36] Chrobak, Ł., Malinski, M., Zakrzewski, J. & Strzałkowski, K. The photoacoustic spectroscopic investigations of the surface preparation of ZnSe crystals. Surf. Sci. 603, 3282-3285 (2009). https://doi.org/10.1016/J.SUSC.2009.09.014.
- [37] Chrobak, Ł., Malinski, M., Zakrzewski, J. & Strzałkowski, K. The photoacoustic spectroscopic investigations of the surface preparation of ZnSe crystals with the use of the optimization methods. Appl. Surf. Sci. 256, 2458-2461 (2010). https://doi.org/10.1016/J.APSUSC.2009.10.087.
- [38] Fernelius, N. C. Extension of the Rosencwaig‐Gersho photoacoustic spectroscopy theory to include effects of a sample coating. J. Appl. Phys. 51, 650-654 (1980). https://doi.org/10.1063/1.327320.
- [39] Hu, H., Wang, X. & Xu, X. Generalized theory of the photoacoustic effect in a multilayer material. J. Appl. Phys. 86, 3953-3958 (1999). https://doi.org/10.1063/1.371313.
- [40] Singh, D., Strzałkowski, K., Abouais, A. & Alaoui-Belghiti, A. Study of the thermal properties and lattice disorder effects in CdTe–based crystals: CdBeTe, CdMnTe, and CdZnTe. Crystals 12, 1555 (2022). https://doi.org/10.3390/cryst12111555.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e995dcfa-b977-4b80-9c48-87ff2b62437b