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Abstract

Building abstraction layers is the key do the creation of reliable, scalable and
maintainable software. Large number of database models and implementations
together with the requirements coming from agile and TDD methodologies
make it even more tangible. The paper is an attempt to present features and
abstraction layers of a transactional key → value persistent storage library in
which the physical storage is fully transparent for a programmer and 
exchangeable on the run-time.
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1 Introduction

The database research and development is one of the key regions of both
scientific and industrial activities. The advent of no-SQL databases, massive 
data storage and processing environments like Google BigTable, Hadoop as 
well as many other large and small database and storage solutions make it a 
great ecosystem to design and build large-scale data-processing software, but
sometimes makes the design decisions harder than expected. It is not easy to 
choose a concrete storage solution when both the functional and non-
functional requirements are hard to freeze at the initial phases of software 
design and development. Moreover the programmers would be so much satis-
fied being able to write business logic abstracting away from the details of a 
concrete storage. It is also very important in TDD and other agile methods.

The paper summarizes new features and some implementation details of a 
flexible Store library, a transactional and realization-transparent key → value 
storage abstraction being an enhanced version of a previously implemented
solution [1]. It also gives an insight into ways of using the library and imple-
menting new realizations. 
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2 Layers of Abstraction 

Previous version of the Store library as described in [1] was designed and
implemented with the following assumptions: 
 Key → value store being the major data storage model. Effectively this 

meant abandoning the relational model for good.
 Query language is the application (business) logic language. Instead of

SQL we use the operators and procedures of the high level programming 
language. This decision might appear costly with respect to joins, but the
key → value store architecture does not support them anyway.

 A lack of transactions. 
 Only a single physical storage implementation using Berkeley DB Java

Edition [3].

A diagram depicting the architecture of the original solution can be found
in [1]. When approaching a Store renewal we decided to make the following
improvements in various aspects of the whole:
 Add the transaction processing, making it an option if possible 1.
 Make no assumptions about the physical storage. There should be various 

and pluggable storage realizations. 
 It should be possible to change the storage realizations on the run-time 

without stopping the application.
 All the key elements of the system (also the realizations) should be as 

loosely coupled as possible, reconfigurable on the run-time and provably 
safely managed (without any resource leaks). 

 All the key elements of the system should exhibit solely (provably) correct 
multitasking behaviors. 

The following Figure 1 presents the architecture of the new Store2. 

                                                     
1 In many transactions-supporting systems it is impossible to turn the transactions off. Instead

an auto-commit mode may be used, like in the case of JDBC. Berkeley DB JE environments
support turning the transactions on and off on the environment opening. When opened in a 
transactional mode, it also supports auto-commit [4].

2 Including Repo � a high level objects storage library. For more information see [2].
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  (microbench-repeat* 10 1e6 5 (S/sequence "<name>")) 

Warming up for 5 [s] ... 
Benchmarking... 
Total runtime:  151.92165799999998 msecs 
Highest time :  40.679912  msecs 
Lowest time  :  8.573213  msecs 
Average      :  12.833566624999996  msecs 

That simple benchmark performed on a low-commodity machine3 shows 
that the creation of 1 mln sequence handles takes circa 13 milliseconds. One is
encouraged to use the form to access sequence abstraction as needed. In par-
ticular it is more elegant to use the (S/sequence �) form in other S-
expressions than to:

(def s (S/sequence …)

and then use the s symbol. 
The following table shows all the sequence operators in Store with their

semantics:

Table 1. Sequence operators and their semantics

Operator Argument(s) Meaning

next! [seq] Generates a next sequence value.

recent [seq] Returns the recently generated value.

drop! [seq] Deletes (drops) the passed sequence. This 
operation causes the underlying realization
free all resources related with this sequence 
abstraction. The sequence abstraction is not
deleted and may be used in further operations. 

An example interactive sequence session (in Clojure REPL within a name-
space stest) can be seen below: 

stest> (S/next!  (S/sequence "1st-seq" 0 1)) 
0 
stest> (S/next!  (S/sequence "1st-seq" 0 1)) 

                                                     
3 AMD E-450 netbook running in the performance-on-demand mode, 4GB of RAM, JVM 

settings: -Xms128m -Xmx2g -XX:MaxPermSize=256M -XX:+UseCompressedOops -
XX:+UseParallelGC 
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1 
stest> (S/next!  (S/sequence "1st-seq" 0 1)) 
2 
stest> (S/recent (S/sequence "1st-seq" 0 1)) 
2 
stest> (S/drop!  (S/sequence "1st-seq" 0 1)) 
OperationStatus.SUCCESS 
stest> (S/next!  (S/sequence "1st-seq" 0 1)) 
0 
stest> (S/next!  (S/sequence "1st-seq" 0 1)) 
1 
stest> (S/next!  (S/sequence "1st-seq" 0 1)) 
2 

Few things are worth mentioning here: 
 There is no need to perform any explicit initialization of a sequence ab-

straction nor it's realization. 
 The actual realization is fully transparent. The only realization-dependent

value above is OperationStatus.SUCCESS � a result of an underlying
operation of dropping the sequence in a Berkeley DB JE Store being the 
currently used store4 realization. 

 No special steps have be taken between dropping the sequence and re-
using it. This is a manifestation of the already mentioned overall
lightweight nature of the Store abstractions. 

Dropping a sequence that has never been referenced before also exhibits a
desired behavior: 

stest> (S/drop! (S/sequence "2nd-seq")) 
OperationStatus.NOTFOUND

It is so in the case of a Berkeley DB JE realization and should be in all 
other realizations. 

4 Indexes 

An index is a key → value storage (mapping) abstraction. To get an access
to an index one has to use an expression: 

                                                     
4 We use a capitalized name Store to refer to a library, and a lowe-case name store when talk-

ing about the possible realization(s) of Store abstractions, in fact � realizations of the kon-
gra.store.Store protocol as will be described further.
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(S/index "<name>")

or  

(S/index "<name>" <key-type> <value-type>)

The second version evaluates to an index abstraction. Informing about key-
type and value-type may be necessary in some realizations, when the serializa-
tions of key and values is non-trivial � JDBC or Berkeley DB JE realizations 
are the apparent examples here. The values of both key-type and value-type
may be any Clojure or Java objects/values, as long as the realizations that 
expect them are able to recognize their meaning5. We strongly recommend
using Java classes, Clojure keywords or symbols.     

Like in the sequences case the actual realization of the index depends on
the currently present store. There are the following index operations: 

Table 2. Index operators and their semantics 

Operator Argument(s) Meaning

get  [index key] Returns a value for a given key stored in
the index or nil, when no value present.

put!  [index key 
val] 
 [index & kvs] 

Puts the key → val entry into the index.
Allows passing a sequence of key → val
pairs to put them all in a single call (see 
example below).

del!  [index key] 
 [index & ks]

Deletes a entry for the key. Allows passing 
a sequence of keys to delete them all in a 
single call. 

drop!  [index] Deletes (drops) the passed index. This 
operation causes the underlying realization
free all resources related with this index 
abstraction. The index abstraction is not
deleted and may be used in further opera-
tions.

clear!  [index] Deletes all entries from the index.

entries  [index] Returns a collection of [key value] pairs 
representing all entries of the index. The 
laziness of the returned collection depends
on the store realization.

                                                     
5 How to inform the realizations of the key- and value-type semantics is a question of the reali-

zations, not the Store abstraction and lays beyond the scope of this paper.
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To become familiar with these operations, please take a look at the follow-
ing example:

stest> (def persons (S/index "persons" :long String)) 
#'stest/persons 
stest> (S/get persons 77032403124) 
nil 
stest> (S/put! persons 77032403124 "Jan Kowalski") 
OperationStatus.SUCCESS 
stest> (S/get persons 77032403124) 
"Jan Kowalski" 
stest> (S/put! persons 77032403124 "Jan Kowalski"     

     77032403125 "Anna Kowalska") 
nil 
stest> (S/get persons 77032403125) 
"Anna Kowalska" 
stest> (S/put! persons 1 "Roman" 2 "Piotr" 3 "Jerzy") 
nil 
stest> (S/get persons 1) 
"Roman" 
stest> (S/get persons 2) 
"Piotr" 
stest> (S/get persons 3) 
"Jerzy" 
stest> (S/del! persons 1 2) 
nil 
stest> (S/get persons 1) 
nil 
stest> (S/get persons 2) 
nil 
stest> (S/get persons 3) 
"Jerzy" 
stest> (doclean (doall (S/entries persons))) 
((3 . Jerzy)) 

The last expression (S/entries persons) returns a lazy sequence of entries 
stored in a Berkeley DB JE store in this case. But the iteration over the persis-
tent entries requires opening a related Database cursor and so a doclean con-
text is required to clean up all interconnected resources. In the case of other 
store realizations (e.g. Software Transactional Memory) this may not be ne-
cessary. 
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5 Transactions 

Adding the transactions support was one of the two most important goals
leading to the Store redesign and re-implementation. Table 3 summarizes the 
new transactional abstraction. 

Table 3. Transactional operators and their meaning

Operator Argument(s) Meaning

 within-transaction6  [& body] Executes the body of code  within
a transaction, if there is a transac-
tion running in the current scope. 
When no transaction present, 
runs within a new transaction.

within-new-
transaction6

 [& body] Executes the body of code  within
a newly created transaction. 
Commits when the body executes 
without any errors/exceptions and 
rolls-back the transaction when 
there were errors/exceptions 
propagated.

 asserting-
transaction6

 [& body] Asserts the presence of a transac-
tion and then executes the body. 
Raises an error when no transac-
tion present.

 commit  [] Commits the currently running 
transaction. This operation should 
only be performed when abso-
lutely necessary. A preferred way 
to go is auto-committing within-
transaction or within-new-
transaction.

 rollback  [] 
 [save-
point]

Aborts (rolls-back) the currently
running transaction. As in the 
case of commit this operation 
should also be used only when 
absolutely necessary, e.g. when 
rolling back to a previously

created save-point7.

                                                     
6 Implemented as Clojure macro [8] 
7 Whether or not save-points functionality will be supported depends on a concrete underlying

store realization.
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 set-savepoint  [] Creates (sets) a new save-point7.

 release-savepoint  [save-
point]

Releases (frees) a save-point7.  

Note that it is possible to use (within-new-transaction �) inside a scope 
of an already running transaction. Syntactically this looks like nesting transac-
tions however the actual support for nested transactions depends on a concrete 
underlying store realizations. Currently neither the Clojure STM nor the
Berkeley DB JE realizations do not support this feature. One can expect a 
support for nested transactions from the JDBC realizations, as some RDBMs 
provide this feature8 (like Oracle). 

Anyway, the following good practices should be applied when using Store
to implement a transactional system:
 By default use (within-transaction …) to execute a body of code in a 

transactional context ensuring a presence of this context. 
 Use (asserting-transaction …) to execute a body of code in a transactional

context, when the lack of a context is perceived as an erroneous state. 
 Do not commit or rollback explicitly if possible 
 Use save-points with care. 
 Do not design with nested transactions8. 

The following procedure written in a transactional way creates one million 
key → value pairs and puts them into an index.
(defn perftest 
  [] 
  (let [s       (S/sequence "persons-seq" 0 1) 
        persons (S/index "persons" Long String)] 
    (S/within-transaction
     (dotimes [i 1e6] 
       (S/put! persons (S/next! s)  
                       (str "John Doe-" i)))))) 

achieving the following performance9: 

stest> (time (perftest)) 
"Elapsed time: 32282.751323 msecs" 
nil

                                                     
8 Please, note that nesting transactions is perceived by some software and database engineers

as a symptom of badly designed application. 
9 The experiment was run on a previously specified machine with a Berkeley DB JE store

realization opened with the following settings: transactional, cache-size 512MB, cache-
mode DEFAULT, durability COMMIT_SYNC, lock-mode READ_COMMITTED (see [3],
[4]). 
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The particular store realization9 used to perform the simple benchmark
above depends heavily on using the database cache: 

stest> (room) 
Used memory  : 580,949692 [MB] 
Free memory  : 455,550308 [MB] 
Total memory : 1036,500000 [MB] 
Max memory   : 1820,500000 [MB] 
nil 
stest> (gc) 
Used memory  : 139,630356 [MB] 
Free memory  : 767,119644 [MB] 
Total memory : 906,750000 [MB] 
Max memory   : 1820,500000 [MB] 
nil  

The significant JVM heap usage after a garbage-collection (circa 140 MB) 
is a manifestation of a way the Berkeley DB JE manages, and � in fact � takes 
an advantage of using the cache.

Finally one final note on the auto-commit mode. Store realizations should
support this mode. Only when it is impossible to be implemented, it may be
permitted to skip this feature. Such a situation probably will never occur, as 
most transactional database or library providers offer some kind of an auto-
commit.  On the other hand, developers using the Store should be aware of the 
fact that running large amounts of operations in an auto-commit mode may
decrease the overall systems' performance beyond the point of their usability. 

6 The Store Abstraction

After presenting the high level abstractions of the Store library, it is time 
now to take a look at the core abstraction, namely the kongra.store.Store pro-
tocol (protocols as means of expression in Clojure are described in depth in 
[9]). The protocol definition looks as follows: 

(defprotocol Store 
  (sequence-drop!            [this seq]) 
  (sequence-next!            [this seq]) 
  (sequence-recent           [this seq]) 

  (index-drop!               [this index]) 
  (index-get                 [this index key]) 
  (index-put!                [this index key val] 
                             [this index key val kvs]) 
  (index-del!                [this index key] 
                             [this index key ks]) 
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  (index-clear!              [this index]) 
  (index-entries             [this index]) 

  (tx-within-transaction     [this body]) 
  (tx-within-new-transaction [this body]) 
  (tx-asserting-transaction  [this body])   
  (tx-commit                 [this]) 
  (tx-rollback               [this] [this savepoint]) 
  (tx-set-savepoint          [this]) 
  (tx-release-savepoint      [this savepoint])) 

To provide a store (kongra.store.Store protocol) realization a provider has 
to do the following:
 introduce a new type whose object (or objects) would represent the realiza-

tion,
 implement all the protocol methods. 

A part of an example realization (with Berkeley DB JE) looks like below: 

(defrecord ^:private JEStore [env]) 
(def INSTANCE (JEStore. (JE/env))) 

(extend-protocol S/Store 
  JEStore 

  (sequence-drop!  [this s] …) 
  (sequence-next!  [this s] …) 
  (sequence-recent [this s] …) 

  (index-drop! [this index]     …) 
  (index-get   [this index key] …) 
   
  (tx-within-transaction [this body] …) 
  (tx-within-new-transaction [this body] …) 

  (tx-asserting-transaction [this body]…) 

  (tx-commit [this] …) 

  (tx-rollback 
    ([this]            …) 
    ([this savepoint]  …)) 

  (tx-set-savepoint [this] …) 

  (tx-release-savepoint [this savepoint] …))
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The Berkeley DB JE store realization is the default one. Getting the cur-
rent store realization is possible with a (S/store) call. As it was mentioned 
earlier, there are two ways to change the realization during the run-time. One
is calling (S/set-store! <store>). This causes a persistent, all-threads 
change of the default store realization. Another way is to use a dynamic bind-
ing of a store to a new one and executing a body of code within this newly 
established binding, e.g.:

(time (S/with-store STM/INSTANCE
                  (perftest))) 
"Elapsed time: 8603.678825 msecs" 
nil 

Now, the perftest was executed with a Software Transactional Memory 
realization represented by STM/INSTANCE value. The operation results in 
much lower execution time (even considering the influence of database cach-
ing in the previous example) and larger memory consumption: 

stest> (gc) 
Used memory  : 297,057205 [MB] 
Free memory  : 630,130295 [MB] 
Total memory : 927,187500 [MB] 
Max memory   : 1820,500000 [MB] 
nil 

Certainly the biggest win with this approach is the ability to change the
target store realizations algorithmically on the run-time. It is the other most
significant benefit coming from the Store redesign and re-implementation.

7 Parallelism of Abstractions and Realizations' Details

The most important problem arising within the Store library and the store
realizations as seen from the point of view of potential users (programmers 
and system designers) is the complexity of configuration behind the particular 
realizations. With a naive approach we would be tempted to put as much con-
figuration details into the kongra.store.Store protocol, in fact � trying to find a
kind of a �greatest common denominator� for all possible configuration op-
tions. Even in the first look this seems a bad design. The new Store's imple-
menter decided to go a completely different way, eliminating all configuration 
out of the Store abstractions and leaving them in current and future realiza-
tions. This convenient and flexible approach gives a rise of a problem of a 
loss of the abstract nature of source codes written using Store. Codes using
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the library should abstract away from the details of the realizations. One (and 
currently preferred) approach is to put all realization-dependent codes in a 
place dedicated to build a kind of a configuration context and the abstract
business logic codes in all other places (procedures, modules) and then to
connect them transparently using the dynamic variables and in-thread bind-
ings. To get a sample how this can be done, please take look at the following
piece of code: 

(BDBJE/with-lock-mode BDBJE/LOCK-MODE-READ-UNCOMMITTED 
  (BDBJE/with-lock-timeout 100 ;; msecs 
    (perftest)))

where the locking mode present in the Berkeley DB JE wrapper library for
Clojure (not even the store realization) is defined like below: 

(def LOCK-MODE-DEFAULT          LockMode/DEFAULT) 
(def LOCK-MODE-READ-COMMITTED   LockMode/READ_COMMITTED) 
(def LOCK-MODE-READ-UNCOMMITTED LockMode/READ_UNCOMMITTED) 
(def LOCK-MODE-RMW              LockMode/RMW)

(dyndef *lock-mode* nil) 

(defn lock-mode 
  [] 
  (dynval *lock-mode*)) 

(defn set-lock-mode! 
  [lmode] 
  (dynset! *lock-mode* lmode)) 

(defmacro with-lock-mode 
  [lmode & body] 
  `(binding [*lock-mode* ~lmode] ~@body)) 

8 Clojure STM Realization 

The Software Transactional Memory is a modern approach to mutual-
exclusion problems in multitasking environments. Clojure provides it's reali-
zation with references, atoms, agents, dynamic variables and persistent data 
structures [8], [9]. We decided to use STM for a store realization, even though 
STM lacks durability feature of a full ACID transactional system (all data is 
stored in RAM). It's unquestionable advantage is speed. 

The major STM store realization features are:
 A sequence is a name→ value pair within a mapping reference. 
 An index is a mapping reference. 
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 No support for nested transactions, as the STM does not support them10. 
 No support for save-points10. 
 No support for an explicit commits10. 
 The explicit rollbacks are possible but not to the save-points10, only pa-

rameter-less.
 Data do not undergo any conversions on the read/write. The types declared 

on referring to an index are not used. This increases the operation speed, 
but eliminates type-safety by disabling any type-checks. 

9 Berkeley DB JE Realization

The Berkeley DB Java Edition library [3], [4] offers full ACID stack, it al-
so allows to operate in a non-transactional mode when properly configured on
the opening-time. Our BDB JE store realization has the following properties: 
 No support for save-points10, as in the case of the STM realization. 
 Support for explicit commits and rollbacks, but not to the save-points10. 
 A support for nested transactions in the store realization layer. However 

the Berkeley DB JE library does not support this feature by now. Whether 
or not it will be supported is a question of the future.

10 A Discussion on Possible Future Realizations 

The most promising, yet not existing realization of the Store library ab-
stractions is the one using JDBC and relational databases. There are many 
ways a key → value storage may be implemented within a relational model. 
Readers are encouraged to take part in a research on the most effective ways
of implementing this realization and also in design and programming phase. 

Another interesting way to go is to use the Hadoop distributed data storage 
and processing engine. This direction is particularly important, as the massive 
storage and distributed data processing seems to be the central point in current 
and future database research and production use.
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