Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Diagnostyka urządzeń górniczych w systemie odwodnienia szybu kopalni - studium przypadku
Języki publikacji
Abstrakty
Maintenance issues in mines are particularly important due to the type and complexity of equipment in operation or working in hostile (even extreme) conditions. In this context, the need to ensure continuous/regular maintenance of machinery, identify potential hazards and ensure operational safety seems to be a challenge. Moreover, selecting an appropriate maintenance method is crucial for a mine, both economically and in technical/organizational terms. This study aims to present the preliminary results of diagnostic tests for pumps performing operational tasks in a mine shaft dewatering system. In addition, this study focused on a detailed discussion of the basic elements of the mine shaft dewatering system and the technical objects studied. A preliminary operational test plan for the investigated pumps operating in the mine shaft dewatering system is also presented. This enabled a discussion of the results obtained from the tests of the first quarter of 2023. The tests used three basic diagnostic methods: vibration analysis, thermal imaging and acoustic testing. Potential directions for further research in the analyzed area were also indicated.
Problematyka utrzymania ruchu w kopalniach jest szczególnie istotna ze względu na typ i złożoność eksploatowanych urządzeń czy pracę w nieprzyjaznych (wręcz ekstremalnych) warunkach operacyjnych. Wyzwaniem w tym kontekście jest konieczność zapewnienia ciągłych/regularnych napraw maszyn, identyfikacji potencjalnych zagrożeń oraz zapewnienia bezpieczeństwa pracy. W tym kontekście, dobór odpowiedniej metody utrzymania ruchu ma kluczowe znaczenie dla kopalni, zarówno w kontekście ekonomicznym jak i techniczno-organizacyjnym. Celem pracy jest więc przedstawienie wstępnych wyników badań diagnostycznych przeprowadzonych dla pomp realizujących zadania operacyjne w systemie odwodnienia szybu kopalni. W ramach realizacji celu pracy skupiono się na szczegółowym omówieniu podstawowych elementów systemu odwodnienia szybu kopalni oraz badanych obiektów technicznych. Przedstawiono również wstępny plan badań eksploatacyjnych dla badanych pomp, funkcjonujących w systemie odwodnienia szybu kopalni. Pozwoliło to na omówienie uzyskanych wyników badań, przeprowadzonych w pierwszym kwartale 2023 roku. Badania zostały opracowane z wykorzystaniem trzech podstawowych metod diagnostycznych: analizy drgań, termowizji oraz badań akustycznych. Wskazano również potencjalne kierunki dalszych prac badawczych w analizowanym obszarze.
Czasopismo
Rocznik
Tom
Strony
69--86
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology (Politechnika Wrocławska), Poland
- Wroclaw University of Science and Technology (Politechnika Wrocławska), Poland
Bibliografia
- 1. B.S. Dhillon, “Mining equipment safety: a review, analysis methods and improvement strategies.” Int J Mining, Reclam Environ 2009; 23: 168–179.
- 2. E. Pourjavad, H. Shirouyehzad and A. Shahin, “Selecting maintenance strategy in mining industry by analytic network process and TOPSIS.” Int J Ind Syst Eng 2013; 15: 171–192.
- 3. O. Agboola, D.E. Babatunde, O.S. Isaac Fayomi, et al., “A review on the impact of mining operation: Monitoring, assessment and management.” Results Eng 2020; 8: 100181.
- 4. D.P. Tripathy, “Effective maintenance practices for mining equipments. 2011; 4–7. Available: http://dspace.nitrkl.ac.in/dspace/bitstream/2080/1947/1/geominetech.pdf, [Accessed: 28.09.2023].
- 5. E. Angeles and M. Kumral, “Optimal Inspection and Preventive Maintenance Scheduling of Mining Equipment.” J Fail Anal Prev 2020; 20: 1408–1416.
- 6. P. Chaowasakoo, H. Seppala and Koivo H., “Age-based maintenance for a fleet of haul trucks.” J Qual Maint Eng 2018; 24: 511–528.
- 7. E. Dreyer, “Cost-effective prevention of equipment failure in the mining industry.” Int J Press Vessel Pip 1995; 61: 329–347.
- 8. “Online Condition Monitoring Offers Early Warning of Impending Equipment Problems.” Eng Min J 2011; 212: 106–108.
- 9. B. Bauer, B. Geropp and A. Seeliger, “Condition Monitoring and Predictive Maintenance in Mining Industry Using Vibration Analysis for Diagnosis of Gear Boxes.” IFAC Proc Vol. 1997; 30: 989–992.
- 10. W. Bartelmus, “Object and operation supported maintenance for mining equipment.” Min Sci 2014; 21: 7–21.
- 11. H. Hu, “Use of data mining techniques for mine machine condition monitoring.” University of Missouri-Rolla, 2003.
- 12. M. Beckman, “Predictive maintenance polishes up mining.” Tribol Lubr Technol 2021; 77: 38–40.
- 13. W.P. Rogers, M.M. Kahraman, F.A. Drews, et al., “Automation in the Mining Industry: Review of Technology, Systems, Human Factors, and Political Risk.” Mining, Metall Explor 2019; 36: 607–631.
- 14. S. Robatto Simard, M. Gamache and P. Doyon-Poulin, “Current Practices for Preventive Maintenance and Expectations for Predictive Maintenance in East-Canadian Mines.” Mining 2023; 3: 26–53.
- 15. S. Yu, X. Rong, L. Wei, et al., “Review of Fault Diagnosis and Early Warning of Coal Mine Ventilator.” In: Proceedings - 2019 Chinese Automation Congress, CAC 2019. 2019, pp. 5226–5230.
- 16. B.L. Gerike and A.A. Mokrushev, “Diagnostics of the Technical State of Bearings of Mining Machines Base Assemblies.” In: IOP Conf. Series: Materials Science and Engineering. 2017, pp. 1–8.
- 17. J.H. Burrows, “Predictive and preventive maintenance of mobile mining equipment using vibration.” McGill University, Montreal, 1996.
- 18. F.J. Dos Santos Silva, H.R. Garcia Viana and A.N. Aquino Queiroz, “Availability forecast of mining equipment.” J Qual Maint Eng 2016; 22: 418–432.
- 19. M. Curilem, C. Huanquilef, G. Acuña, et al., “Prediction of the Criticality of a Heavy Duty Mining Equipment.” In: 2015 Latin America Congress on Computational Intelligence (LA-CCI). 2015, pp. 1–5.
- 20. Razor Labs, “AI enabled predictive maintenance in mining,” 2022. Available: https://www.razor-labs.com/wp-content/uploads/2022/03/Razor-Labs-AI-enabled-predictive-maintenance-in-mining-Report-2022.pdf [Accessed: 29.09.2023].
- 21. L. Dong, R. Mingyue and M. Guoying, “Application of Internet of Things Technology on Predictive Maintenance System of Coal Equipment.” Procedia Eng 2017; 174: 885–889.
- 22. T. Wu, S. Chen and P. Wu, “Intelligent fault diagnosis system based on big data.” J Eng 2019; 2019: 8980–8985.
- 23. R. Isermann, “Fault-Diagnosis of pumps.” In: R. Isermann (ed.) “Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems.” Berlin Heidelberg: Springer-Verlag, 2011, pp. 143–179.
- 24. S.V. Jain and R.N. Patel, “Investigations on pump running in turbine mode: A review of the state-of-the-art. Renew Sustain Energy Rev 2014; 30: 841–868.
- 25. J.F. Olesen and H.R. Shaker, “Predictive maintenance for pump systems and thermal power plants: State-of-the-art review, trends and challenges.” Sensors (Switzerland); 20. Epub ahead of print 2020. DOI: 10.3390/s20082425.
- 26. J.J. Aguilera, W. Meesenburg, T. Ommen, et al., “A review of common faults in largescale heat pumps.” Renew Sustain Energy Rev 2022; 168: 112826.
- 27. P.K. Rajak, S. Sarkar and B. Paul, “Comparison of the dewatering of underground and open pit coal mine pumping systems in (BCCL),” Dhanbad, Jharkhand, India. In: IOP Conference Series: Materials Science and Engineering. 2018. Epub ahead of print 2018. DOI: 10.1088/1757-899X/377/1/012152.
- 28. Andritz Engineered Success, “Premium pumping technology for the mining industry. IIoT enabled pump solutions.” Available: https://www.andritz.com/resource/blob/34958/4fcd8d1f5334d6a8255da3aa28b5f9f9/sammlung-pumps-mining-brochure-en-data.pdf.
- 29. Y. Hermawan, F. Danang Wijaya, N.A. Setiawan, et al., “Prediction of Lubricant Service Life Using Data Mining to Improve Reliability of Water Injection Pumps in Crude Oil Production Facility.” In: 7th International Conference on Electrical, Electronics and Information Engineering: Technological Breakthrough for Greater New Life, ICEEIE 2021. IEEE, 2021, pp. 2–6.
- 30. S.R. Majumdar, “Oil Hydraulic Systems: Principles and Maintenance.” McGraw-Hill Education, 2013.
- 31. T. Minav, “Electric-Drive-Based Control and Electric Energy Regeneration in a Hydraulic System.” Lappeenranta University of Technology, Available: http://www.doria.fi/handle/10024/69968, 2011.
- 32. N. Dutta, P. Kaliannan and S. Paramasivam, “A comprehensive review on fault detection and analysis in the pumping system.” Int J Ambient Energy 2022; 43: 6878–6898.
- 33. K.K. McKee, G.L. Forbes, I. Mazhar, et al., “A Review of Machinery Diagnostics and Prognostics Implemented on a Centrifugal Pump.” In: J. Lee, J. Ni, J. Sarangapani, et al. (eds.) “Engineering Asset Management. Lecture Notes in Mechanical Engineering.” London: Springer Verlag, 2011, pp. 593–614.
- 34. W.R. Blischke and P.D.N. Murthy, “Reliability: Modeling, Prediction, and Optimization.” John Wiley & Sons, Inc., 2000.
- 35. A. Ali and A. Abdelhadi, “Condition-Based Monitoring and Maintenance: State of the Art Review.” Appl Sci 2022; 12: 688.
- 36. F.M. Discenzo, D. Chung and K.A. Loparo, “Pump condition monitoring using selfpowered wireless sensor nodes.” Metrics Key to Success - Proc 60th Meet Soc Mach Fail Prev Technol 2006; 425–434.
- 37. M.A.S. ALTobi, G. Bevan, P. Wallace, et al., “Centrifugal pump conditio monitoring and diagnosis using frequency domain analysis.” In: Applied Condition Monitoring. Springer International Publishing, 2019, pp. 122–131.
- 38. C. Kalmár and F. Hegedus, “Condition monitoring of centrifugal pumps based on pressure measurements.” Period Polytech Mech Eng, 2019; 63: 80–90.
- 39. M. Pech, J. Vrchota, J. Bednář, “Predictive maintenance and inteligent sensors in smart factory: Review.” Sensors, 2021; 21: 1–39.
- 40. D. Divya, B. Marath and M.B. Santosh Kumar, “Review of fault detection techniques for predictive maintenance.” J Qual Maint Eng. Epub ahead of print, 2022. DOI:10.1108/JQME-10-2020-0107.
- 41. P.P. Harihara and A.G. Parlos, “Fault Diagnosis of Centrifugal Pumps Using Motor Electrical Signals.” Centrif Pumps, 2012; 15–32.
- 42. R.S. Beebe, “Predictive Maintenance of Pumps Using Condition Monitoring.” Elsevier Science & Technology Books, 2004.
- 43. L. Chen, L. Wei, Y. Wang, et al., “Monitoring and Predictive Maintenance of Centrifugal Pumps Based on Smart Sensors.” Sensors; 22. Epub ahead of print, 2022. DOI: 10.3390/s22062106.
- 44. Y. Yang, L. Ding, J. Xiao, et al., “Current Status and Applications for Hydraulic Pump Fault Diagnosis: A Review.” Sensors, 2022; 22: 1–29.
- 45. R. Rogowski, S. Werbińska-Wojciechowska, “Maintenance problems of mining equipment on the example of a mine dewatering system (in Polish). (accepted Publ.)
- 46. ISO 9614-2: Acoustics - Determination of sound power levels of noice sources using sound intensity. Part 2: Measurement by scanning. 1996.
- 47. ISO 4412/1 Hydraulic fluid power - Test code for the determination of airborne noise levels. Part 1: Pumps. 1979.
- 48. ISO 10816-1:1995 Mechanical vibration — Evaluation of machine vibration by measurements on non-rotating parts — Part 1: General guidelines. 1995.
- 49. ISO 20816-1:2016 Mechanical vibration — Measurement and evaluation of machine vibration — Part 1: General guidelines. 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e98e3f10-05be-4d7b-951d-704a84c426e4