PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Barrier infrared detectors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1959, Lawson and co-workers publication triggered development of variable band gap Hg1-xCdxTe (HgCdTe) alloys providing an unprecedented degree of freedom in infrared detector design. Over the five decades, this material system has successfully fought off major challenges from different material systems, but despite that it has more competitors today than ever before. It is interesting however, that none of these competitors can compete in terms of fundamental properties. They may promise to be more manufacturable, but never to provide higher performance or, with the exception of thermal detectors, to operate at higher temperatures. In the last two decades a several new concepts of photodetectors to improve their performance have been proposed including trapping detectors, barrier detectors, unipolar barrier photodiodes, and multistage detectors. This paper describes the present status of infrared barrier detectors. It is especially addressed to the group of III-V compounds including type-II superlattice materials, although HgCdTe barrier detectors are also included. It seems to be clear that certain of these solutions have merged as a real competitions of HgCdTe photodetectors.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • 1. A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2010.
  • 2. A. White, “Infrared detectors”, U.S. Patent 4,679,063, 1983.
  • 3. P.C. Klipstein, “Depletionless photodiode with suppressed dark current and method for producing the same”, U.S. Patent 7,795,640, 2003.
  • 4. S. Maimon and G. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature”, Appl. Phys. Lett. 89, 151109–1–3 (2006).
  • 5. D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, and S.D. Gunapala, “Type-II superlattice infrared detectors”, in Semiconductors and Semimetals , Vol. 84, pp. 1–57, edited by S.D. Gunapala, D.R. Rhiger, and C. Jagadish, Elsevier, Amsterdam, 2011.
  • 6. J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices”, Appl. Phys. Lett. 91, 043514-1-2 (2007).
  • 7. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, and G.W. Wicks, “Benefits and limitations of unipolar barriers in infrared photodetectors”, Infrared Physics & Technol. 59, 152–155 (2013).
  • 8. P. Klipstein, “XBn barrier photodetectors for high sensitivity operating temperature infrared sensors” Proc. SPIE 6940, 69402U−1–11 (2008).
  • 9. D.Z. Ting, C.J. Hill, A. Soibel, J. Nguyen, S.A. Keo, M.C. Lee, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, “Antimonide-based barrier infrared detectors”, Proc. SPIE 7660, 76601R−1–12 (2010).
  • 10. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, “Xbn barrier photodetectors based on InAsSb with high operating temperatures” Opt. Eng. 50, 061002-1-10 (2011).
  • 11. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, S. Maimon, and G.W. Wicks, “Use of unipolar barriers to block dark currents in infrared detectors” Proc. SPIE 8012, 8022T (2012).
  • 12. P. Martyniuk and A. Rogalski, “HOT infrared photodetectors”, Opto-Electron. Rev. 21, 240−258 (2013).
  • 13. P. Klipstein, D. Aronov, E. Berkowicz, R. Fraenkel, A. Glozman, S. Grossman, O. Klin, I. Lukomsky, I. Shtrichman, N. Snapi, M. Yassem, and E. Weiss, “Reducing the cooling requirements of mid-wave IR detector arrys”, SPIE Newsroom 10.1117/2.1201111.003919, 2011.
  • 14. M. Razeghi, S.P. Abdollahi, E.K. Huang, G. Chen, A. Haddadi, and B.M. Nquyen, “Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures”, Opto-Electr. Rev. 19, 261–269 (2011).
  • 15. M. Razeghi, “Type II superlattice enables high operating temperature, ”SPIE Newsroom, 10.1117/2.1201110.003870 (2011).
  • 16. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, S. Maimon, and G.W. Wicks, “Dark current filtering in unipolar barrier infrared detectors”, Appl. Phys. Lett. 99, 121112 (2011).
  • 17. P.C. Klipstein, Y. Gross, A. Aronov, M. ben Ezra, E. Berkowicz, Y. Cohen, R. Fraenkel, A. Glozman, S. Grossman, O. Kin, I. Lukomsky, T. Markowitz, L. Shkedy, I. Sntrichman, N. Snapi, A. Tuito, M. Yassen, and E. Weiss, “Low SWaP MWIR detector based on XBn focal plane array” Proc. SPIE 8704, id. 87041S-1-12 (2013).
  • 18. A. Khoshakhlagh, S. Myers , E. Plis , M.N. Kutty, B. Klein, N. Gautam, H. Kim, E.P.G. Smith, D. Rhiger, S.M. Johnson, and S. Krishna, “Mid-wavelength InAsSb detectors based on nBn design”, Proc. SPIE 7660, 76602Z (2010).
  • 19. A.M. Itsuno, J.D. Philips, and S. Velicu, “Design and modelling of HgCdTe nBn detectors”, J. Elect. Mater. 40, 1624–1629 (2011).
  • 20. M. Kopytko, A. Kębłowski, W. Gawron, P. Madejczyk, A. Kowalewski, and K. Jóźwikowski, “High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD”, Opto-Electr. Rev. 21. 42, 402−405 (2013).
  • 21. J.F. Klem, J.K. Kim, M.J. Cich, S.D. Hawkins, T.R. Fortune, and J.L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors”, Proc. SPIE 7608, 76081P (2010).
  • 22. H. Kroemer, “The 6.1 family (InAs, GaSb, AlSb) and its heterostructures: a selective review”, Physica E 20, 196–203 (2004).
  • 23. H. Sakaki, L.L. Chang, R. Ludeke, C.A. Chang, G.A. Sai-Halasz, and L. Esaki, “In1-xGaxAs-GaSb1-y As yheterojunctions by molecular beam epitaxy”, Appl. Phys. Lett. 31, 211–213 (1977).
  • 24. Y. Wei and M. Razeghi, “Modelling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering”, Phys. Rev. B69, 085316-7 (2004).
  • 25. G.A. Umana-Membreno, B. Klein, H. Kala, J. Antoszewski, N. Gautam, M.N. Kutty, E. Plis, S. Krishna, and L. Faraone, “Vertical minority carrier electron transport in p-type InAs/GaSb type-II superlattices”, Appl Phys. Lett. 101, 253515 (2012).
  • 26. D. Zuo, P. Qiao, D. Wasserman, and S.L. Chuang, “Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control”, Appl. Phys. Lett. 102, 141107 (2013).
  • 27. E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based Xbnn bariodes grown by molecular beam epitaxy on GaAs”, J. Crystal Growth 339, 31–35 (2012).
  • 28. P. Martyniuk and A. Rogalski, “Modelling of InAsSb/AlAsSb nBn HOT detector's performance limits”, Proc. SPIE 8704, 87041X (2013).
  • 29. A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, N.K. Dhar, P.S. Wijewarnasuriya, and C. Grein, “5MWIR InAsSb barrier detector data and analysis”, Proc. SPIE 8704, 87041U (2013).
  • 30. E.H. Aifer, J.G. Tischler, J. H. Warner, I. Vurgaftman, W.W. Bewley, J.R. Meyer, J.C. Kim, and L.J. Whitman, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency”, Appl. Phys. Lett. 89, 053519 (2006).
  • 31. B.-M. Nguyen, M. Razeghi, V. Nathan, and G.J. Brown, “Type-II “M” structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes”, Proc. SPIE 6479, 64790S (2007).
  • 32. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure”, Appl. Phys. Lett. 163511 (2007).
  • 33. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, E.K. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes”, Appl. Phys. Lett. 93, 163502 (2008).
  • 34. M. Razeghi, H. Haddadi, A.M. Hoang, E.K. Huang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at centre for quantum devices”, Infrared Phys. & Technol. 59, 41–52 (2013).
  • 35. O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “«N» structure for type-II superlattice photodetectors”, Appl. Phys. Lett. 101, 073505 (2012).
  • 36. J.L. Johnson, L.A. Samoska, A.C. Gossard, J.L. Merz, M.D. Jack, G.H.Chapman, B.A.Baumgratz, K.Kosai,and S.M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1–xInxSb superlattice in heterojunctions with GaSb”, J. Appl. Phys. 80, 1116–1127 (1996).
  • 37. A. Khoshakhlagh J.B. Rodriguez, E. Plis, G.D. Bishop, Y.D. Sharma, H.S. Kim, L.R. Dawson and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer superlattice detectors”, Appl. Phys. Lett. 91, 263504 (2007).
  • 38. I. Vurgaftman, E.H. Aifer, C.L. Canedy, J.G. Tischler, J.R. Meyer, and J.H. Warner, “Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes”, Appl. Phys. Lett. 89, 121114 (2006).
  • 39. E.H. Aifer, J.H. Warner, C.L. Canedy, I. Vurgaftman, E.M. Jackson, J.G. Tischler, J.R. Meyer, S.P. Powell, K. Olver, and W.E. Tennant, “Shallow-etch mesa isolation of graded-bandgap‘‘W’’-structured type II superlattice photodiodes”, J. Electron. Mater. 39, 1070−1079 (2010).
  • 40. D.Z.-Y. Ting, C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, J. Nguyen, and S.D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector”, Appl. Phys. Lett. 95, 023508 (2009).
  • 41. E.A. DeCuir, G.P. Meissner, P.S. Wijewarnasuriya, N. Gautam, S. Krishna, N.K. Dhar, R.E. Welser, and A.K. Sood, “Long-wave type-II superlattice detectors with unipolar electron and hole barriers”, Opt. Eng. 51, 124001 (2012).
  • 42. N. Gautam, S. Myers, A.V. Barve, B. Klein, E.P. Smith, D. Rhiger, E. Plis, M.N. Kutty, N. Henry, T. Schuler-Sandyy, and S. Krishna, “Band engineering HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices”, Infrared Physics & Techol. 59, 72−77 (2013).
  • 43. E. Plis, H.S. Kim, G. Bishop, S. Krishna, K. Banerjee, and S. Ghosh, “Lateral diffusion of minority carriers in nBn based type-II InAs/GaSb strained layer superlattice detectors”, Appl. Phys. Lett. 93, 123507 (2008).
  • 44. A.D. Hood, A.J. Evans, A. Ikhlassi, D.L. Lee, and W.E. Tennant, “LWIR strained-layer superlattice materials and devices at Teledyne Imaging Sensors”, J. Electron. Mater. 39, 1001–1006 (2010).
  • 45. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic”, J. Electron. Mater. 37, 1406 (2008).
  • 46. D.R. Rhiger, “Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe”, J. Electron. Mater. 40, 1815–1822 (2011).
  • 47. A.M. Itsuno, J.D. Phillips, and S. Velicu, “Mid-wave infrared HgCdTe nBn photodetector”, Appl. Phys. Lett. 100, 161102 (2012).
  • 48. A.M. Itsuno, J.D. Phillips, and S. Velicu, “Design of an Auger-suppressed unipolar HgCdTe NBnN photodetector”, J. Electron. Mater. 41, 2886–2892 (2012).
  • 49. S. Velicu, J. Zhao, M. Morley, A.M. Itsuno, and J.D. Philips, “Theoretical and experimental investigation of MWIR HgCdTe nBn detectors”, Proc. SPIE 8268, 82682X-1-13 (2012).
  • 50. M. Kopytko, A. Kębłowski, W. Gawron, P. Madejczyk, A. Kowalewski, and K. Jóźwikowski, “High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD”, Opto-Electr. Rev. 21, 402-405 (2013).
  • 51. P. Maryniuk and A. Rogalski, “Modelling of MWIR HgCdTe complementary barrier HOT”, Solid-State Electronics 80, 96–104 (2013).
  • 52. E.F. Schubert, L.W. Tu. G.J. Zydzik, R.F. Kopf, A. Benvenuti and M.R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping”, Appl. Phys. Lett. 60, 466−468 (1992).
  • 53. S.D. Gunpala, D.Z Ting, C.J. Hill, and S.V. Bandara, U.S. Patent No. 7,737,411, 2010.
  • 54. N.D. Akhavan, G. Jolley, G. Umana-Membreno, J. Antoszewski, and L. Faraone, “Performance modelling of bandgap engineered HgCdTe-based nBn infrared detectors”, Extended Abstracts, The 2013 Workshop on the Physics and Chemistry of II-VI Materials , Chicago (2013).
  • 55. M. Kopytko, A. Kębłowski, W. Gawron, A. Kowalewski, “MOCVD grown HgCdTe barrier structures for high-operating temperature MWIR photodetectors”, to be published.
  • 56. L. Zheng, M. Tidrow, L. Aitcheson, J. O’Connor, and S. Brown, “Developing high-performance III-V superlattice IRFPAs for defense - challenges and solutions”, Proc. SPIE 7660, 7660-1-12 (2010).
  • 57. C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, D.Z. Ting, S.D. Gunapala, D.R. Rhiger, R.E. Kvaas, and S.F. Harris, “Demonstration of mid and long-wavelength infrared antimonide-based focal plane arrays”, Proc. SPIE 7298, 7294–04 (2009).
  • 58. S.D. Gunapala, D.Z. Ting, C.J. Hill, J. Nguyen, A. Soibel, S.B. Rafol, S.A. Keo, J.M. Mumolo, M.C. Lee, J.K. Liu, and B. Yang, “Demonstration of a 1024×1024 pixel InAs-GaSb superlattice focal plane array”, Phot. Tech. Lett. 22, 1856–1858 (2010).
  • 59. P. Manurkar, S. Ramezani-Darvish, B.. Nguyen, M. Razeghi, and J. Hubbs, “High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices”, Appl. Phys. Lett. 97, 193505−1–3 (2010).
  • 60. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays”, J. Appl. Phys. 105, 091101 (2009).
  • 61. A.M. Hoang, G. Chen, A. Haddadi, and M. Razeghi, “Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices”, Appl. Phys. Lett. 102, 011108 (2013).
  • 62. M. Razeghi, A.M. Hoang, A. Haddadi, G. Chen, S. Ramezani-Darvish, P. Bijjam, P. Wijewarnasuriya, and E. Decuir, “High-performance bias-select able dual-band short-/Mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb type-II superlattices”, Proc. SPIE 8704, 8704–54 (2013).
  • 63. M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Ramezani-Darvish, and P. Bijjam, “High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb type-II superlattices”, Proc. SPIE 8704, 87040S (2013).
  • 64. M.A. Kinch, H.F. Schaake, R.L. Strong, P.K. Liao, M.J. Ohlson, J. Jacques, C-F Wan, D. Chandra, R.D. Burford, and C.A. Schaake, “High operating temperature MWIR detectors”, Proc. SPIE 7660, 76602V-1 (2010).
  • 65. W.W. Bewley, J.R. Lindle, C.S. Kim, M. Kim, C.L. Canedy, I. Vurgaftman, and J.R. Meyer, “Lifetime and Auger coefficients in type-II W interband cascade lasers”, Appl. Phys. Lett. 93, 041118 (2008).
  • 66. M.A. Kinch, Fundamentals of Infrared Detector Materials, SPIE Press, Bellingham, 2007.
  • 67. M.A. Kinch, ”The challenges of background limited room temperature photon detection”, The 2013 U.S. Workshop on the Physics and Chemistry of II-VI Materials, Tutorial Session, Chicago, 2013.
  • 68. J. Wróbel, P. Martyniuk, E. Plis, P. Madejczyk, W. Gawron, S. Krishna, and A. Rogalski, “Dark current modeling of MWIR type-II superlattice detectors”, Proc. SPIE 8353, 8353–16 (2012).
  • 69. http://www.vigo.com.pl/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e98cacc2-1809-4237-91e0-07a354e6b35a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.