Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decision-making on the integration of renewable energy in the mining industry: A case studies analysis, a cost analysis and a SWOT analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
The mining industry is showing increasing interest in using renewable energy (RE) technologies as one of the principles of sustainable mining. This is witnessed in several pilot projects in major mining countries around the world. Positive factors which favor this interest are gaining importance and negative barrier factors seem to be less relevant. For a mine operator, the switch from fossil fuel to RE technologies is the outcome of decision making processes. So far, research about such decision making on the use of RE in mining is underdeveloped. The purpose of this paper to present a practical decision rule based on a principle of indifference between RE and fossil fuel technologies and on appropriate time management. To achieve this objective, three investigations are made: (i) a case studies analysis, (ii) a comparative cost analysis, and (iii) a SWOT analysis.
Opis fizyczny
Bibliogr. 45 poz.
  • Department of International Management of Resources and Environment, Technical University Bergakademie Freiberg, Schlossplatz 1, 09596, Freiberg, Germany
  • Department of International Management of Resources and Environment, Technical University Bergakademie Freiberg, Schlossplatz 1, 09596, Freiberg, Germany
  • 1. Acron-Sunmark. Large-scale showcase project. 10 July 2017).
  • 2. AECOM, & ARENA. (2014). Australia's Off-Grid Clean Energy Market. Research Paper. Sydney: AECOM Australia Pty Ltd / Canberra: Australia Renewable Energy Agency.
  • 3. Appunn, K. (2016). Germany's greenhouse gas emissions and climate targets. Clean Energy Wire. (Accessed 20 July 2017).
  • 4. BREE. (2012). Resources and Energy Statistics. Annual 2012. Canberra: Australian Goverment - Bureau of Resources and Energy Economics.
  • 5. Boussougouth, J. (2013). Mining, the key to unlocking Africa's independent power producer markets (Vol. 18). Private sector & development.
  • 6. CANWEA. Case Study: Diavik Wind Farm: Wind energy helps reduce carbon footprint. Canadian Wind Energy Association. (Accessed 10 October 2017).
  • 7. Case study: Replacing diesel power with wind energy. (2014). Clencore. 06 July 2017).
  • 8. Chen, J., & Rabiti, C. (2017). Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems. Energy, 120, 507-517.
  • 9. Choi, Y., & Song, J. (2017). Review of photovoltaic and wind power systems utilized in the mining industry. Renewable and Sustainable Energy Reviews, 75, 1386e1392.
  • 10. CLEAR confortable low energy architecture. Climatic Zones of the World. (Accessed 18 August 2017). Diavik Diamond Mine: Socio Economic monitoring Agreement Report. (2014).
  • 11. Diavik Diamond Mines Inc., 1e18. 202014.pdf/(Accessed 07 July 2017).
  • 12. Dyrelung, A. Large-scale solar heating in Chile. State of Green. 20 July 2017).
  • 13. Eberhard, A., Kolker, A., & Leigland, J. (2014). South Africa's renewable energy IPP procurement program: Success factors and lessons (Vol. 56). Public-private infrastructure advisory facility (PPIAF).
  • 14. Escalante Soberanis, M., Alnaggar, A., & Meггda,W. (2015). The economic feasibility of renewable energy for off-grid mining deployment (pp. 509-518). The Extractive industries and society. (Accessed 20 July 2017).
  • 15. Gold Fields e Enel Green Power South Deep Solar EIA. (2017). Background information document (pp. 25e28). (Accessed 2 August 2017).
  • 16. Golubova, A. (2016). The biggest opportunities for renewable are off-grid mines - Redavia's CEO. Energy and Mines. (Accessed 15 August 2017).
  • 17. Hamilton, T. (2016). Mining industry starts to dig renewables. The Magazine for Cleaner Kapitalism Corporate Knights. (Accessed 25 August 2017).
  • 18. Henin, A. (2016). Microgrid energy storage systems (ESS) e Katanga mining case study.
  • 19. Hill, M., & Mitimingi, T. C. (2017). Africa's biggest copper mine hit by Zambian power restrictions. Bloomberg. (Accessed 10 May 2017).
  • 20. IEA. (2016). CO2 emissions from fuel combustion highlights (Vol. 166). International Energy Agency. (Accessed 24 August 2017).
  • 21. Integrated Annual Report. (2016). Gold Fields (pp. 1e132). pdf/. (Accessed 5 August 2017).
  • 22. Jung, J., & Villaram, M. (2017). Optimal planning and design of hybrid renewable energy system for microgrids. Renewable and Sustainable Energy Reviews, 75, 180-191.
  • 23. Kim, J., Chen, J., & Garcia, H. (2016). Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems. Energy, 112, 52e66.
  • 24. Kost, C., Mayer, J. N., Thomsen, J., Hartmann, N., Senkpiel, C., Philipps, S., et al. (2013). Levelized cost of electricity renewable energy technologies (Vol. 50). Fraunhofer institute for solar energy system ISE.
  • 25. LAMGOLD Corporation. (2017). Essakane Gold mine. Burkina Faso (Accessed 10 August 2017).
  • 26. Liezl, W. (2013). Diavik wind farm project. Diavik diamond mines inc. (Accessed 15 July 2017).
  • 27. Lucas, J. (2016). DeGrussa solar power station begins operating. The West Australian. (Accessed 15 September 2017).
  • 28. Martin, R. (2014). Renewable energy will supply at least 5 percent of power demand for the mining industry by 2022. Navigant Research-Press Release. (Accessed 21 August 2017).
  • 29. Mineral Resources and Mineral Reserves Overview. (2009). South deep Gold Mine: Technical short form report. Gold Fields. (Accessed 10 August 2017).
  • 30. Mining with principles. (2017). International Council on Mining & Metals. 05 October 2017).
  • 31. Opportunity redefined. (2015). 2015 Annual report (Vol. 128). Sandfire resource NL. (Accessed 10 August 2017).
  • 32. Paschalidou, A., Tsatiris, M., & Kitikidou, K. (2016). Energy crops for biofuel production or for food? - SWOT analysis (case study: Greece). Renewable Energy, 93, 636e640.
  • 33. Phadermroda, B., Crowder, R., & Wills, G. (2017). Importance-performance analysis based on SWOT analysis. International Journal of Information Management, 10.
  • 34. Polat, Z., Alkan, M., & Sürmeneli, H. (2017). Determining strategies for the cadastre 2034 vision using an AHP-based SWOT analysis: A case study for the Turkish cadastral and land administration system. Land Use Policy, 67, 151-166.
  • 35. Reglan Mine. (2016). Glencore. (Accessed 05 July 2017).
  • 36. Richard, M. (2014). Renewable energy will supply at least 5 percent of power demand for the mining industry by 2022. Navigant Research-Press Release. percent-of-power-demand-for-the-mining-industry-by-2022. (Accessed 10 July 2017).
  • 37. Rio Tinto - ARENA's new solar plant for Weipa mine starts operation. (2015). World of wining - surface & underground (Vol. 67, p. 295).
  • 38. Shi, X. (2016). The future of ASEAN energy mix: A SWOT analysis. Renewable and Sustainable Energy Review, 53, 672-680.
  • 39. Slavin, A. (2017). New renewable energy for mine project e IAMGOLD Essakane to benefit from largest hybrid plant in Africa. Energy and Mines. essakane-to-benefit-from-largest-hybrid-plant-in-africa/. (Accessed 26 August 2017).
  • 40. SNIM Mauritania. (2016). Mining http://www.mining-technology. com/projects/snim/. (Accessed 2 August 2017).
  • 41. Stevens, D., & Kortenhorst, J. (2016). Integrating solar power into Gold Fields' South deep mine. Energy and Mines, 1e21. (Accessed 20 July 2017). THEnergy ANALYSIS. (2017). Solar-diesel and Wind-diesel Microgrids for Off-grid Mines Gain Momentum - New Projects Expected.
  • 42. THEnergy sustainable consulting. and-wind-diesel-microgrids-for-off-grid-mines-gain-momentumnewprojects-expected/. (Accessed 25 July 2017).
  • 43. UNFCCC. (2015). Adoption of the Paris agreement, proposal by the President, draft decision -/CP.21. United Nations Framework Convention on Climate Change (UNFCCC). FCCC/CP/2015/L.9/Rev.1 (Accessed 3 August 2017).
  • 44. Zahraee, S., Assadi, M., & Saidur, R. (2016). Application of artificial intelligence methods for hybrid energy system optimization. Renewable and Sustainable Energy Reviews, 66, 617-630.
  • 45. Zuniga, R. (2015). Modeling of supply chain processes of the mineral raw materials industry from the perspective of EM. Bremen: SCOR and DCOR models. (Accessed 15 September 2017).
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.