Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A shape-memory alloy (SMA) is expected to be applied as intelligent or smart material since it shows the functional characteristics of the shape memory effect and superelasticity. Most SMA elements, with these characteristics, perform cyclic motions. In these cases, the fatigue property of SMA is one of the most important issues in view of evaluating functional characteristics of SMA elements. The fatigue properties are complex since they depend on stress, strain, temperature and their hysteresis. If an SMA is implanted with high-energy ions, the thermomechanical properties of the material may change, resulting in long fatigue life. In the present study, the nitrogen ion implantation was applied to modify the surface of a TiNi SMA tape and the influence of implantation treatment on the bending fatigue properties was investigated.
Czasopismo
Rocznik
Tom
Strony
293--310
Opis fizyczny
Bibliogr. 26 poz., rys. kolor.
Twórcy
autor
- Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
autor
- Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
autor
- Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
- tobushi@aitech.ac.jp
autor
- Nippon Trex Co., Ltd. 350 Minamiyama Shinden Ina-cho, Toyokawa 441-0193, Japan
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawinskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- 1. K. Otsuka, C.M. Wayman [Eds.], Shape Memory Materials, Cambridge University Press, Cambridge, 1998, 1–49.
- 2. M. Wagner, T. Sawaguchi, G. Kaustrater, D. Hoffken, G. Eggeler, Structural fatigue of pseudoelastic NiTi shape memory wires, Materials Science and Engineering A, 378, 105–109, 2004.
- 3. R. Matsui, H. Tobushi, Y. Furuichi, H. Horikawa, Tensile deformation and rotating-bending fatigue properties of a high-elastic thin wire, a superelastic thin wire, and a superelastic thin tube of NiTi alloys, Trans. ASME, J. Eng. Mater. Tech., 126, 384–391, 2004.
- 4. H. Tobushi, R. Matsui, K. Takeda, E.A. Pieczyska, Mechanical properties of shape memory materials. Part 2: Fatigue properties of shape-memory alloy, Nova Science Pub., New York, 2013, 115–164.
- 5. J.K. Hirvonen, Ion Implantation, Academic Press, United States, 1980.
- 6. I.P. Jain, G. Agarwal, Ion beam induced surface and interface engineering, Surface Science Reports, 66, 77–172, 2011.
- 7. T. Asaoka, M. Mitsuo, Effect of aluminum ion implantation on shape-memory properties of titanium-nickel alloy, Materials Transactions, JIM, 41, 6, 739–744, 2000.
- 8. H. Peletier, D. Muller, P. Mille, J. Grob, Structural and mechanical characterization of born and nitrogen implanted NiTi shape memory alloy, Surface and Coating Technology, 158-159, 309–317, 2002.
- 9. A.D. Pogrebnjak, E.A. Bazyl, Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment, Vacuum, 64, 1, 1–7, 2001.
- 10. L. Fengbin, F. Guohao, C. Yan, S. Qiguo, Q. Min, S. Yi, Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels, Nuclear Instruments and Methods in Physics Research B, 307, 412–418, 2013.
- 11. K. Takeda, K. Mitsui, H. Tobushi, N. Levintant-Zayonts, S. Kucharski, Influence of nitrogen ion implantation on deformation and fatigue properties of TiNi shape memory alloy wire, Arch. Mech. 65, 5, 391–405, 2013.
- 12. L.D. Yu, G.W. Shuy, T. Vilaithong, Friction modification of WC-Co by ion implantation, Surface and Coatings Technology, 128-129, 404–409, 2000. 310 K. Takeda at al.
- 13. L. Thair, U. Kamachi Mudali, N. Bhuvaneswaran, K.G. Nair, R. Asokamani, B. Raj, Nitrogen ion implantation and in vitro corrosion behavior of as-cast Ti–6Al–7Nb alloy, Corrosion Science, 44, 2439–2457, 2002.
- 14. P.W. Shum, Y.F. Xu, Z.F. Zhou, W.L. Cheng, K.Y. Li, Study of TiAlSiN coatings post-treated with N and C+N ion implantations. Part 2: the tribological analysis, Wear, 274-275, 274–280, 2012.
- 15. D. Manova, D. Hirsch, E. Richter, S. Mändl, H. Neumann, B. Rauschenbach, Microstructure of nitrogen implanted stainless steel after wear experiment, Surface & Coatings Technology, 201, 8329–8333, 2007.
- 16. S. Gokul Lakshmi, D. Arivuoli, Enhanced wear resistance of Ti-5Al-2Nb-1Ta orthopedic alloy by nitrogen ion implantation, Tribology International, 39, 548–552, 2006.
- 17. N. Levinatnt-Zayonts, S. Kucharski, Surface characterization and wear behavior of ion-implanted NiTi shape memory alloy, Vacuum, 83, S220–S223, 2009.
- 18. Z. Swiatek, M. Michalec, N. Levintant-Zayonts, J. Bonarski, A. Budziak, O. Bonchyk, G. Savitskij, Structural evolution of near-surface layers in NiTi alloy caused by an ion implantation, Acta Physica Polonica A, 1, 75–78, 2011.
- 19. H. Tobushi, K. Mitsui, K. Takeda, K. Kitamura, Y. Yoshimi, Performance and design of precision-cast shape memory alloy brain spatula, J. Theoretical and Appl. Mech., 50, 3, 855–869, 2012.
- 20. M. Kawaguchi, Y. Ohashi, H. Tobushi, Cyclic characteristics of pseudoelasticity of Ti-Ni alloys: effect of maximum strain, test temperature and shape memory processing temperature, JSME International Journal, Series I, 34, 76–82, 1991.
- 21. H. Tobushi, T. Nakahara, Y. Shimeno, T. Hashimoto, Low-cycle fatigue of TiNi shape-memory alloy and formulation of fatigue life, Trans. ASME, J. Eng. Mater. Tech., 122, 186–191, 2000.
- 22. E. Pieczyska, S. Gadaj, W.K. Nowacki, K. Hoshio, Y. Makino, H. Tobushi, Characteristics of energy storage and dissipation in TiNi shape memory alloy, Sci. Tech. Advanced Mater., 6, 889–894, 2005.
- 23. R. Matsui, Y. Makino, H. Tobushi, Y. Furuichi, F. Yoshida, Influence of strain ratio on bending fatigue life and fatigue crack growth in TiNi shape-memory alloy thin wires, Mater. Trans., 47, 759–765, 2006.
- 24. K. Tanaka, T. Hayashi, Y. Ito, H. Tobushi, Analysis of theremomechanical behavior of shape memory alloys, Mech. Mater., 13, 207–215, 1992.
- 25. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564–1583, 1992.
- 26. J.E. Shigley, C.R. Mischke, Mechanical Engineering Design, 5th ed., McGraw-Hill, New York, 1989, 282–283.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e98b44bd-4e42-491e-a81d-5036f49b4635