Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
Abstrakty
In this study, a modification of resonant column/torsional shearing (RC/TS) apparatus was proposed to perform a qualitative analysis of a noncohesive soil specimen vibration during RC tests. An additional multipoint displacement detection system was installed in the RC/TS WF8500 device. In the new measuring system, 48 mini-magnets are attached to the side surface of a cylindrical soil specimen, creating a regular grid of measuring points. Around 48 Hall sensors (Honeywell SS495A1) are used to measure changes in the magnetic field strength due to the movement of the corresponding magnets on the surface of the specimen subjected to dynamic torque. The Hall sensor generates an analog signal that is proportional to the change in the magnetic field. The measurements are collected with a newly developed data acquisition system that consists of a set of analog-to-digital converters and a set of ARM (Advanced RISC (Reduced Instruction Sets Computing) Machine) microcontrollers. The measurement system is controlled with a dedicated software, ControlRec, developed by the authors. The measurements are taken synchronically with and independently from the standard RC test procedure. The new measuring technique allows to observe displacements of the 48 points on the specimens’ surface with over 4 times higher sampling rate than in the original measuring system. As a result, additional effects related to the mechanical wave propagation through soil specimen were observed (local disturbances in distribution of vibration amplitudes or significant displacements near the bottom end of the specimen, which is assumed to be fixed in the standard RC/TS results analysis), that could not be identified using the standard equipment of the device.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
382--394
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
Bibliografia
- [1] Anestis, S., & Surendra, K. (1990). The modified “stiffened” Drnevich resonant column apparatus. Soils and Foundations, 30(3), pp. 53-68.
- [2] ASTM Standard. (2000). Standard Test Methods for Modulus and Damping of Soils by the Resonant-Column Method (ASTM D4015- 92(2000)). doi:10.1520/D4015-92R00
- [3] Bae, Y.-S., & Bay, J. (2009). Modifications of resonant column and torsional shear device for the large strain. Computers and Geotechnics, 36(6), pp. 944-952. doi:10.1016/j. compgeo.2009.02.004
- [4] Bui, M. T., Priest, J. A., & Clayton, C. (2019). A New Calibration Technique to Improve Data Reduction for Stokoe Resonant Column Test: Energy and Geotechnics. Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering, (pp. 43-48). doi:10.1007/978-981-13-2306-5_3
- [5] Bujko, M. (2021). Identification and description of elastoplastic deformation of soil in the range of small strain. [Doctoral dissertation, Bialystok University of Technology].
- [6] Bujko, M., Srokosz, P. E., & Dyka, I. (2017). Use of Optical Method for Improvement of Soil Dynamic Tests in Torsional Shear Apparatus.
- [7] 2017 Baltic Geodetic Congress (BGC Geomatics) (pp. 404-408). Gdansk: IEEE. doi:10.1109/BGC.Geomatics.2017.45
- [8] Clayton, C. R., Priest, J. A., Bui, M. T., Zervos, A., & Kim, S. G. (2009). The Stokoe resonant column apparatus: effects of stiffness, mass and specimen fixity. Géotechnique, 59(5), pp. 429-437. doi:10.1680/geot.2007.00096
- [9] Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves [Doctoral dissertation, The University of Texas at Austin]. ProQuest Dissertations Publishing.
- [10] Desrues, J., Viggiani, G., & Bésuelle, P. (Eds.). (2006). Advances in X-ray tomography for geomaterials. ISTE.
- [11] Drnevich, V., Werden, S., Ashlock, J., & Hall, J. (2015). Applications of the New Approach to Resonant Column Testing. Geotechnical Testing Journal, 38, p. 20140222. doi:10.1520/ GTJ20140222
- [12] Dyka, I., & Srokosz, P. E. (2012). Badania gruntu w aparacie skrętnego ścinania RC/TS. Część 1. Inżynieria Morska i Geotechnika, 6, pp. 700- 707.
- [13] Dyka, I., & Srokosz, P. E. (2014). Badania gruntu w aparacie skrętnego ścinania RC/TS. Część 2. Inżynieria Morska i Geotechnika, 2, pp. 118- 129.
- [14] Dyka, I., Srokosz, P. E., & Bujko, M. (2017). Influence of grain size distribution on dynamic shear modulus of sands. Open Engineering, 7, pp. 317–329.
- [15] Gill, D., & Lehane, B. (2001). An optical technique for investigation soil displacement patterns. Geotechnical Testing Journal, 24(3), pp. 324- 329.
- [16] Huawen, X., Fook, H. L., Kai, Y., Jiahui, H., & Yong, L. (2019). Miniature LVDT setup for local strain measurement on cement-treated clay specimens. Marine Georesources & Geotechnology, 37(5), pp. 568-577. doi:10.1080/10641 19X.2018.1460428
- [17] Iskander, M. (2010). Optical Techniques in Geotechnical Engineering. In Modelling with Transparent Soils. Springer Series in Geomechanics and Geoengineering. (pp. 5-18). Springer. doi:10.1007/978-3-642-02501-3_2
- [18] Kong, L., Sayem, H. M., & Tian, H. (2018). Influence of drying– wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry. Canadian Geotechnical Journal, 55(2), pp. 208-216.
- [19] Kuang, K. (2018). Wireless chemiluminescence-based sensor for soil deformation detection. Sensors and Acruators, 269, pp. 70-78. doi:10.1016/j.sna.2017.11.017
- [20] Li, Z., Escoffier, S., & Kotronis , P. (2013). Using centrifuge tests data to identify the dynamic soil properties: Application to Fontainebleau sand. Soil Dynamics and Earthquake Engineering, 52, pp. 77-87. doi:10.1016/j.soildyn.2013.05.004
- [21] Massarsch, K. R. (2004). Deformation properties of finegrained soils from seismic tests. Keynote lecture. International Conference on Site Characterization, ISC’2. Porto.
- [22] Mayne, P. W., Coop, M. R., Springman, S. M., Huang, A., & Zornber, J. G. (2009). Geomaterial behaviour and testing. Proc. of the 17-th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandia.
- [23] Srokosz, P. E., Bujko, M., Bocheńska, M., & Ossowski, R. (2021). Optical flow method for measuring deformation of soil specimen subjected to torsional shearing. Measurement, 174, p. 109064. doi:10.1016/j.measurement.2021.109064
- [24] Srokosz, P. E., Dyka, I., Bujko, M., & Bocheńska, M. (2021). A Modified Resonant Column Device for In-Depth Analysis of Vibration in Cohesive and Cohesionless Soils. Energies, 14(20), p. 6647. doi:10.3390/en14206647
- [25] Tyrologou, P., Dudeney, A. W. & Grattoni, C. A. (2005). Evolution of porosity in geotechnical composites. Magnetic Resonance Imaging, 23(6), p. 765-768.
- [26] White, D. J., Take, W. A., & Bolton, M. D. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), pp. 619–631.
- [27] Wichtmann, T. (2016). Soil Behaviour under Cyclic Loading— Experimental Observations, Constitutive Description and Applications. [Habilitation, Karlsruhe Institute of Technology]. Karlsruhe, Germany.
- [28] Wichtmann, T., & Triantafyllidis, T. (2020). Influence of the Grain-Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus Gmax. Journal of geotechnical and geoenvironmental engineering, 135(10), pp. 1404-1418. doi:10.1061/(ASCE)GT.1943- 5606.0000096
- [29] Xu, D. -S. (2017). A New Measurement Approach for Small Deformations of Soil Specimens Using Fiber Bragg Grating Sensors. Sensors, 17(5), p. 1016. doi:10.3390/s17051016
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e98862bc-118e-4c2c-9b8f-26f1ed87e540