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Sliding mode control of periodic review perishable inventories

with multiple suppliers and transportation losses
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Abstract. The purpose of this paper is to develop robust and computationally efficient supply chain management strategy ensuring fast

reaction to the demand variations for periodic review perishable inventory systems. For that purpose, we apply a sliding mode approach

and we propose a new discrete time warehouse management strategy. The strategy employs the sliding hyperplane appropriately designed to

ensure a dead-beat performance of the closed loop system. Our strategy not only explicitly takes into account decay of goods stored in the

warehouse (perishing inventories) but it also accounts for transportation losses which take place on the way from suppliers to the warehouse.

The proposed strategy ensures full customers’ demand satisfaction, minimizes the on-hand inventory volume and prevents from exceeding

the warehouse capacity. This reflects the need of simultaneous minimization of the lost sales costs and inventory holding costs. Furthermore,

the strategy ensures that the ordered quantities of goods are always non-negative and upper bounded. These favourable properties of the

proposed strategy are formally stated as a lemma and three theorems and proved in the paper.

Key words: discrete time sliding mode control, sliding surface design, inventory control.

1. Introduction

The control theoretic approach to the management of logistic

processes, and in particular to the problem of supply chain

management has recently become an important research sub-

ject. A good overview of the techniques used in the field and

the obtained results can be found in [1–6]. The first application

of the control theory methods to the management of logistic

processes was reported in the early 1950s when Simon [7]

applied the servomechanism control algorithm to find an effi-

cient strategy of goods replenishment in continuous time, sin-

gle product inventory control systems. A few years later the

discrete time servomechanism control algorithm for the pur-

pose of efficient goods replenishment has been proposed [8].

The next landmark in this field was the work of Forrester [9],

who analyzed the amplification of demand fluctuations when

moving upstream in the supply chain, later called bullwhip

effect. First block diagram representation of inventory and or-

der based production control system model and its dynamic

analysis was presented by Towill [10]. A number of other

control theory attributes, which were used to model and ana-

lyze inventory-production systems can be found in literature.

Important contribution to this scope of study with respect

to control of bullwhip effect has been presented in [11–15].

The authors of those papers aimed at smoothing an ordering

policy and inventory levels and proved that utilizing control

theory methods, it is possible to successfully prevent the bull-

whip effect. Over the last two decades numerous innovative

solutions have been presented, and therefore, further in this

section we are able to mention only a few, arbitrarily select-

ed examples. In [12] and [16] autoregressive moving average

(ARMA) system structure has been applied in order to mod-

el uncertain demand. Then in [6, 17–19] model predictive

control of supply chain has been proposed and in [20] a ro-

bust controller for the continuous-time system with uncertain

processing time and delay has been designed by minimising

H∞-norm. However, practical implementation of the strate-

gy described in [20] requires application of numerical meth-

ods in order to obtain the control law parameters, which lim-

its its analytical tractability. Also estimation techniques have

been used in inventory management literature. The recursive

least squares method and Kalman filter, were applied in [17]

and [21] for lead time identification and in [12] and [16] for

demand forecasting respectively. Several other methods, in-

cluding convex programming [22], genetic algorithms [23],

heuristic techniques [24] and simulations [25] have also been

applied to improve warehouse operation.

In [26] state space representation of supply chains is pro-

posed and lead-time delay is explicitly taken into account by

the introduction of additional state variables. This approach

results in the optimal controller designed by minimisation of

quadratic performance index. A similar approach is applied

in [27] where an LQ optimal sliding mode controller is de-

signed. However, both papers [26] and [27] are concerned

with conventional, non-deteriorating inventories only. An ex-

tension of the results presented in [26] to the case of per-

ishable inventories is given in [28], an LQ optimal sliding

mode controller for supply chains with deteriorating stock is

proposed in [29] and a dead-beat sliding mode controller for

a single supplier logistic system is designed in [30]. How-

ever, none of the papers [26–30] takes into account trans-

portation losses (or in other words goods decay during the

order procurement time). Therefore, in this paper we consider

perishable inventories replenished by multiple suppliers and
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we explicitly account for the ordered goods losses during the

non-negligible lead time.

In this paper we consider a periodic-review inventory sys-

tem with perishable goods replenished from multiple supply

sources. However, in contrast to the previously published re-

sults we consider not only losses which take place when the

commodity is stored in the warehouse, but also those which

happen during the supply process, i.e. the losses on the way

from the supplier to the warehouse. We propose a discrete

time representation of the supply chain dynamics and we ap-

ply discrete time sliding mode methodology [31–38] to design

the controller for the considered system. The controller design

objective is on one hand to fully satisfy the imposed demand,

and on the other, to minimize at the same time the on-hand

inventory volume. This reflects the need of simultaneous min-

imization of the lost sales costs and inventory holding costs.

Since the demand may vary quite rapidly, we determine the

sliding hyperplane so that the proposed discrete-time sliding-

mode controller ensures the dead-beat system performance.

Hence the closed-loop system is stabilized and its error con-

verges to zero in the shortest possible time. This approach

results in good dynamics of the closed loop system and its

fast reaction to the unpredictable variations of demand. More-

over, the sliding mode controller proposed further in this pa-

per leads to chattering free system operation. The controller is

determined analytically in a closed form, which allows us to

state and formally prove important properties of proposed in-

ventory policy. First, we prove that the designed management

policy always generates strictly positive and upper bounded

order quantities, which is an important issue from the practical

point of view. Next, we define the warehouse capacity which

provides enough space for all incoming shipments. Finally, we

state and prove conditions ensuring that all the imposed de-

mand is fully satisfied and 100% service level is achieved. In

many practical applications this is a desirable property directly

related to customer satisfaction and it becomes indispensable

when it comes to strategic supplies.

2. Problem statement

In this paper we consider a periodic review production-

inventory system, where a distribution centre, replenished

from multiple supply sources, provides products for customers

or another production stage. The analysed inventory system is

subject to an a priori unknown, bounded, time-varying de-

mand. The flow of goods and information in the considered

system (with transportation losses and the on-hand stock de-

terioration) is presented in Fig. 1.

Fig. 1. Flow of goods and information in the considered production-

inventory system

The main objective of this work is to design a stable sup-

ply policy, which will maximize demand satisfaction from the

resources available at the distribution centre. The design pro-

cedure proposed in the paper not only explicitly takes into

account the delay (lead-time) between placing of an order at

the suppliers and goods arrival at the distribution centre, but it

also directly accounts for the on-hand stock deterioration and

commodity losses in the supply process, i.e. the losses which

take place during the lead-time. The model of the analysed

production-inventory system is illustrated in Fig. 2.

The stock replenishment orders u(kT) are placed at reg-

ular time instants kT, where T is the review period of the

considered process and k = 0, 1, 2, .... The particular value

of each order is calculated on the basis of the current stock

level y(kT), the stock reference level yref and the order his-

tory. We assume that replenishment order u(kT) can be split

among r supply options. As a consequence, in each time in-

stant, βi of the total order is placed at supplier i (i = 1, . . ., r),
where βi is a fraction from interval [0,1] satisfying

r
∑

i=1

βi = 1. (1)

Each nonzero order placed at the supplier is realized with

lead-time delay Li, which is a multiple of the review peri-

od. Thus, Li = niT, where ni is a positive integer. Without

the loss of generality, we can order the supply alternatives

according to their lead time as follows

L1 ≤ L2 ≤ . . . ≤ Lr. (2)

Fig. 2. System model
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The imposed demand (the amount of goods requested

from inventory in period k) is modelled as an unknown,

bounded function of time 0 ≤ d(kT ) ≤ dmax. In contrast

to many other approaches proposed earlier in the literature,

we neither expect any particular distribution of the demand

nor, we assume correlation or autocorrelation in the demand.

The only assumption required in our work is that the demand

is non-negative and upper bounded by a known, possibly very

big constant value dmax. Therefore, this definition of the de-

mand is quite general and makes the presented approach fairly

universal. According to this definition the following two situ-

ations might occur:

• If there is a sufficient amount of goods in the warehouse,

then the imposed demand is fully satisfied.

• If the imposed demand is greater than the amount of goods

available at the on-hand stock and in arriving shipments,

then only some part of the demand is satisfied. Hence, ad-

ditional demand is lost, as we assume that the sales are not

backordered.

Let h(kT) denote the amount of goods sold to customers

or sent to retailers in the distribution network at time instant

kT. Then

0 ≤ h(kT ) ≤ d(kT ) ≤ dmax. (3)

The stock balance equation for the considered system with

perishable inventory has the following form

y [(k + 1)T ] = ρ [y (kT ) + uR (kT ) − h (kT )] , (4)

where uR(kT) is the order received at time kT. The frac-

tion of perishable stock which remains in the warehouse after

each review period is represented by ρ = 1 − σ. We assume

that incoming shipments also deteriorate during transportation

process. Consequently, the fractions of ordered goods which

arrive at the warehouse are represented by αi(i = 1, . . ., r),
where

0 < αi ≤ 1. (5)

Thus, the order received at time kT is expressed by

uR(kT ) =

r
∑

i=1

αiβiu [(k − ni)T ] . (6)

Furthermore, we assume that the warehouse is initially

empty, i.e. y(kT) = 0 for k < 0, and the first order is placed

at the time instant kT = 0. Due to the lead-time delay, the

first order arrives at the warehouse at the time instant n1, and

y(kT) = 0 for any k ≤ n1. Taking into account our assump-

tions, initial conditions and (6), the stock level for any k > 0
can be expressed as

y (kT ) =

r
∑

i=1

αiβi

k−1
∑

j=0

ρk−ju [(j − ni)T ] −

k−1
∑

j=0

ρk−jh(jT )

=

r
∑

i=1

αiβi

k−ni−1
∑

j=0

ρk−ni−ju(jT ) −

k−1
∑

j=0

ρk−jh(jT ).

(7)

In order to make our notation as concise as possible, in the

remainder of the paper we will use k as the independent vari-

able in place of kT. Let us consider the following discrete time

state space representation of the analysed inventory system

x(k + 1) = Ax(k) + bu(k) + vh(k),

y(k) = qT x(k),
(8)

where x(k) = [x1(k) x2(k) . . . xn(k)]T is the state vector,

x1(k) = y(k) is the on-hand stock level at time instant k and

xj(k) = u(k − n + j − 1) for any j = 2, . . ., n represents

delayed input signal u. Furthermore, A is n×n state matrix,

b, v, and q are n × 1 vectors

A =

















ρ ρa2 ρa3 · · · ρan

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

















,

b =

















0

0
...

0

1

















, v =

















−ρ

0

0
...

0

















, q =

















1

0
...

0

0

















.

(9)

The system order is equal to n = nr + 1 = Lr/T + 1
and it depends on the review period and lead-time of the last

supplier Lr. The elements ai (i = 2, . . ., n) in the first row

of the state matrix A, are calculated as follows

ai =
∑

j:nj=n−i+1
αjβj , (10)

i.e. for any i = 2, . . ., n; ai is the sum of those products αjβj

for which nj = n − i + 1.

The desired system state vector is defined as

xT
d =

[

1 (1 − ρ)/ (ρΩ) . . . (1 − ρ)/ (ρΩ)
]

yref

=
[

1 σ/ (ρΩ) . . . σ/ (ρΩ)
]

yref ,

(11)

where yref denotes the reference stock level, and

Ω =
r

∑

j=1

αjβj =
n

∑

j=2

aj . (12)

Since the main objective of the controller design procedure

is to obtain stable supply policy, it is necessary to stabilize

the first state variable at the reference level. Therefore, when

choosing the desired state vector, it is necessary to take in-

to account that the commodities perish at the rate 1 − ρ
when kept in the warehouse as well as the fact that they

decay during the transportation process at the rate propor-

tional to Ω. Substituting the proposed desired system state

vector into the state equation, one can verify that in the

steady state when the demand is equal to zero, the on-hand

stock is refilled by incoming shipments at the rate equal to

yref (1 − ρ)/(ρΩ) = yrefσ/(ρΩ).
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3. Proposed inventory management policy

In this section we present the controller design procedure for

the considered multi-supplier inventory system (8)–(9) with

perishable goods and transportation losses. The procedure is

based on the discrete time sliding mode approach. In the first

part of this section, the choice of the sliding hyperplane en-

suring dead-beat performance is described. Next, in the latter

part we formulate and prove the most important properties of

the proposed inventory management policy.

3.1. Dead-beat sliding-mode controller design. For the

sliding mode controller design purpose we introduce a sliding

hyperplane described by

s(k) = cT e(k) = 0, (13)

where c = [c1 c2 . . . cn]T is such a vector that

cT b 6= 0. Parameters c1, c2, . . ., cn will be determined fur-

ther in this section. The closed-loop system error may be

expressed as e(k) = xd −x(k). Substituting (8) into equation

cT e(k + 1) = 0 we obtain the following control law

u(k) =
(

cT b
)

−1
cT [xd − Ax(k)] , (14)

One may easily notice from (14), that the controller perfor-

mance depends on the choice of the sliding plane parameters

c1, c2, . . ., cn. Using (9) we can rewrite (14) as

u(k) = c−1
n yref



c1 + (1 − ρ) /ρΩ

n
∑

j=2

cj



+

−c−1
n







c1ρx1(k)+c1ρa2x2(k)+

n
∑

j=3

(c1ρaj + cj−1)xj(k)







,

(15)

In order to find parameters of the hyperplane which will en-

sure that the system error is eliminated in finite (and the

smallest possible) number of control steps, we analyse co-

efficients of the characteristic polynomial of the closed-loop

system state matrix Ac = [In − b(cT b)−1cT ]A. The poly-

nomial det(zIn − Ac) can be expressed as follows

det(zIn − Ac) = zn +
c1ρan + cn−1 − ρcn

cn

zn−1

+
c1ρan−1 + cn−2 − ρcn−1

cn

zn−2

+ · · ·+
c1ρa2 − ρc2

cn

z.

(16)

A discrete-time system is asymptotically stable if and only

if all its eigenvalues are located inside the unit circle on the z
plane. Additionally, for the dead-beat performance, the char-

acteristic polynomial of the closed-loop system should have

the following form

det(zIn − Ac) = zn (17)

which is satisfied when

c1 = cnΨρ−1 and cj = cnΨ

j−1
∑

i=1

ρi−jai+1

for j ≥ 2,

(18)

where

Ψ = ρn−1

/

n−1
∑

i=1

ρi−1ai+1. (19)

Using (10), we can rewrite (19) as follows

Ψ = 1

/

r
∑

i=1

ρ−niαiβi. (20)

Hence, vector c describing the parameters of the sliding hy-

perplane has the following form

cT =
[

Ψρ−1 Ψρ−1a2 Ψ
(

ρ−2a2 + ρ−1a3

)

· · · Ψ

n−2
∑

i=1

ρi−n+1ai+1 1
]

cn,
(21)

which guarantees that the closed-loop system has all its eigen-

values located at the origin of the z plane.

Substituting (21) into (15) we get

c1 + (1 − ρ) / (ρΩ)

n
∑

j=2

cj = cn/ (ρΩ) . (22)

The control law can be expressed in the following way

u(k) =
yref

ρΩ
− Ψx1(k) − Ψ

n
∑

j=2

aj

n
∑

i=j

ρi−jxi(k). (23)

According to the state space representation of inventory sys-

tem (9), the first state variable denotes the on-hand stock level

x1(k) = y(k), and the other state variables are equal to the

delayed control signals generated at the previous n−1 review

periods xj(k) = u(k − n + j − 1). Therefore, taking into

account that system order is equal to n = nr + 1 we obtain

u(k) =
yref

ρΩ
− Ψy(k) − Ψ

r
∑

i=1

αiβi

k−1
∑

j=k−ni

ρk−ni−ju(j).

(24)

The obtained control signal incorporates reference stock level,

current stock level and open orders modified with respect to

transportation losses and goods decay in the warehouse.

3.2. Properties of the proposed controller. One of the fun-

damental issues in practical implementation of each inventory

policy is to ensure that the quantity of goods shipped to the

warehouse is always nonnegative and upper bounded. There-

fore, now we introduce a lemma and a theorem which show

that the proposed policy indeed ensures these two highly de-

sirable properties. First of all, it can be easily noticed from

(24) that u(0) = yref/(ρΩ). Furthermore, for any k ≥ 1 the

following lemma holds.

Lemma. If the proposed inventory policy is applied, then for

any k ≥ 1

u(k) = (1 − ρ)
yref

ρΩ
+ Ψρh (k − 1) . (25)
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Proof. Substituting (7) into (24), we get

u(k) =
yref

ρΩ
− Ψ

r
∑

i=1

αiβi

k−ni−1
∑

j=0

ρk−ni−ju(j)

+Ψ

k−1
∑

j=0

ρk−jh(j) − Ψ

r
∑

i=1

αiβi

k−1
∑

j=k−ni

ρk−ni−ju(j)

=
yref

ρΩ
+ Ψ

r
∑

i=1

αiβiρ
−ni

k−1
∑

j=0

ρk−ju(j)

+Ψ

k−1
∑

j=0

ρk−jh(j).

(26)

Then applying (20) to (26) we obtain

u(k) =
yref

ρΩ
−

k−1
∑

j=0

ρk−ju(j) + Ψ

k−1
∑

j=0

ρk−jh(j). (27)

For k = 1, it follows immediately from (27) that

u(1) =
yref

ρΩ
− ρu(0) + Ψρh(0)

=
yref

ρΩ
− ρ

yref

ρΩ
+ Ψρh(0)

= (1 − ρ)
yref

ρΩ
+ Ψρh(0)

(28)

which shows that the lemma is indeed satisfied for k = 1.

Now let us assume that (25) is true for all integers up to some

l > 1. Using this assumption and (27), the order quantity gen-

erated at time instant l + 1 can be expressed in the following

form

u(l + 1) =
yref

ρΩ
−

l
∑

j=0

ρl+1−ju(j)

+Ψ

l
∑

j=0

ρl+1−jh(j) =
yref

ρΩ
+ ρ

yref

ρΩ
− ρ

yref

ρΩ

−ρ

l−1
∑

j=0

ρl−ju(j) − ρu(l) + Ψρ

l−1
∑

j=0

ρl−jh(j)

+Ψρh (l) =
yref

ρΩ
− ρ

yref

ρΩ

+ρ





yref

ρΩ
−

l−1
∑

j=0

ρl−ju(j) + Ψ

l−1
∑

j=0

ρl−jh(j)





−ρu(l) + Ψρh (l)

= (1 − ρ)
yref

ρΩ
+ Ψρh (l) .

(29)

Since l is an arbitrary positive integer, it follows from the

principle of mathematical induction that (25) is true for any

integer k ≥ 1. This concludes the proof of the lemma.

Theorem 1. If the proposed warehouse management policy

is applied, then for any k ≥ 0 the control signal satisfies the

following inequalities

(1 − ρ)
yref

ρΩ
≤ u(k)

≤ max

[

yref

ρΩ
, (1 − ρ)

yref

ρΩ
+ Ψρdmax

]

.

(30)

Proof. It follows directly from (24) that u(0) = yref/(ρΩ),
and this implies that the theorem is satisfied for k = 0. More-

over, since the demand is always bounded as stated by in-

equalities (3), then for any k > 0, from the lemma proved

above, we obtain

(1 − ρ)
yref

ρΩ
≤ u(k) ≤ (1 − ρ)

yref

ρΩ
+ Ψρdmax (31)

which ends the proof of Theorem 1.

The next theorem states another important property of the

proposed policy, namely it shows that the inventory level nev-

er exceeds its reference value. This theorem shows that if the

warehouse capacity is selected at least equal to yref , then

enough storage space at the distribution centre for all incom-

ing shipments will always be provided.

Theorem 2. If the proposed inventory management policy is

applied, then for any k ≥ 0 the stock level is always upper

bounded by yref , i.e.

y (k) ≤ yref . (32)

Proof. Due to initial conditions and lead-time delay, the con-

sidered warehouse is empty for any k ≤ n1. Hence, we need

to show that inequality (32) holds for any k ≥ n1.

Let us assume that for some integer l ≥ n1, y(l) ≤ yref .

Then, we demonstrate that this inequality is also satisfied for

l + 1. The stock level at the time instant l + 1, based on the

inventory balance equation, can be expressed as

y (l + 1) = ρ

[

y(l) +

r
∑

i=1

αiβiu(l − ni) − h(l)

]

. (33)

Substituting (7) and (27) into (33), we obtain

y (l + 1) = ρy (l) + ρ

r
∑

i=1

αiβi

yref

ρΩ

−ρ

r
∑

i=1

αiβi

l−ni−1
∑

j=0

ρl−ni−ju(j)

+ρΨ

r
∑

i=1

αiβi

l−ni−1
∑

j=0

ρl−ni−jh(j) − ρh(l)

= ρy (l) + yref − ρy (l)

−ρΨ

r
∑

i=1

αiβi

l−1
∑

j=l−ni

ρl−ni−jh(j) − ρh(l)

= yref − ρΨ
r

∑

i=1

αiβiρ
−ni

l
∑

j=l−ni

ρl−jh(j).

(34)
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Since h(k) is always nonnegative, then y(l + 1) ≤ yref .

Using the principle of the mathematical induction we con-

clude that the theorem is satisfied for any k ≥ 0.

Now we formulate and prove the last theorem, which

shows how to select the reference stock level, so that full

demand satisfaction is guaranteed. In other words, this theo-

rem demonstrates how big warehouse capacity is needed, to

ensure that all sales are realized from the readily available

resources.

Theorem 3. If the proposed inventory policy is applied, and

the target stock level satisfies the following inequality

yref > Ψdmax

r
∑

i=1

αiβiρ
−ni

ni
∑

j=0

ρj+1 (35)

then for any k ≥ n the stock level is strictly positive.

Proof: Assumption (3) implies that the realized demand is

always upper bounded. Hence, taking into account (28), (34)

and (35), for any k ≥ n, we obtain

y (k) = yref − Ψ
r

∑

i=1

αiβiρ
−ni

l−1
∑

j=l−1−ni

ρl−jh(j)

≥ yref − Ψdmax

r
∑

i=1

αiβiρ
−ni

l−1
∑

j=l−1−ni

ρl−j > 0.

(36)

This concludes the proof.

4. Numerical example

In order to verify the effectiveness of the proposed supply

policy we performed a number of simulation tests. The sys-

tem parameters considered in the tests are: review period

T = 1 day, inventory deterioration rate σ = 0.12, which

implies that ρ = 1 − 0.12 = 0.88, and the maximum dai-

ly demand at the distribution centre dmax = 70 items. The

warehouse is replenished from 4 supply sources. The lead-

time delays of the sources (Li = niT ), transportation chan-

nel loss coefficients αi and order partitioning coefficients βi,

(i = 1, 2, 3, 4) are presented in Table 1. Furthermore, the el-

ements ai (i = 2, . . ., 8) of the first row of state matrix A,

calculated according to (10), are given in Table 2.

Table 1

Supply chain parameters

i 1 2 3 4

Li [days] 1 3 4 7

αi [–] 0.95 0.92 0.89 0.84

βi [–] 0.35 0.25 0.25 0.15

Table 2

Elements of the first row of state matrix

i 2 3 4 5 6 7 8

ai 0.126 0 0 0.2225 0.23 0 0.3325

Further in this section, we demonstrate results of the sim-

ulation tests performed for two different reference values of

the stock level yref . In the first test we verify the performance

of our strategy with the reference value of the stock level cal-

culated according to Theorem 3. It follows from the theorem

that in order to obtain full demand satisfaction, the reference

stock level should be greater than 218.26 items. Thus, we set

yref = 225 items. In the second simulation scenario we ana-

lyze effectiveness of the proposed control strategy in the case

of the reference stock level reduced by 20% and equal to 180

items.

The actual demand for both tests is depicted in Fig. 3.

It can be seen from the figure the demand changes instantly

between its extreme values and contains some stochastic com-

ponent which fades after 45 review periods. Rapid changes of

the demand determine the most unfavourable simulation sce-

nario and enable us to verify the system performance even in

the very adverse market conditions.

Fig. 3. Demand at the distribution center

The orders generated by the proposed policies are shown

in Fig. 4. It can be easily seen from the figure that in both

simulation scenarios the control signal is always nonnegative

and bounded. Moreover, the system quickly reacts to sudden

changes in the demand without undesirable oscillations. How-

ever, since the initial values of the control signal are relative-

ly big, application of a reaching law approach based control

scheme to decrease the values may be a feasible option [30,

33–35].

Fig. 4. Order quantities for: a) yref = 225 items, b) yref = 180
items

Figure 5 presents the on-hand stock. The figure shows that

for the controller with yref = 225 items after the initial phase

of the control process our supply policy always guarantees full

satisfaction of the market demand. Furthermore, it can be seen

from the figure that the proposed strategy with the reference

stock value decreased by 20% also works properly and en-

sures smaller stock volume at the expense of moderate sales

loss. This observation proves that the proposed strategy may
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also be applied when limited storage capacity is available. In

those circumstances customer demand is no longer fully satis-

fied and the service level slightly decreases, but holding costs

are essentially reduced. Finally, Fig. 6 shows that the repre-

sentative point of the system reaches the sliding hyperplane

in one step and then remains in the vicinity of the plane, i.e.

s ∈ 〈0, cnΨdmax〉 = 〈0, 50.19〉. This is a direct result of the

demand acting in the considered system as a unidirectional

unmatched disturbance.

Fig. 5. On-hand stock: a) yref = 225 items, b) yref = 180 items

Fig. 6. Sliding variable s(k): a) yref = 225 items, b) yref = 180

items

5. Conclusions

In this paper a new discrete time, chattering free sliding mode

control strategy for periodic review supply chain management

has been proposed. The strategy takes into account perishable

inventories with transportation losses, i.e. not only it explicitly

concerns goods decay in the warehouse, but it also accounts

for the losses which take place during the delivery process.

In order to ensure fast reaction of the controlled system to

the unpredictable changes of demand, the sliding hyperplane

is selected so that the dead-beat performance of the closed

loop system is achieved. The proposed strategy ensures full

demand satisfaction, eliminates the risk of warehouse over-

flow and always generates non-negative and bounded orders.

These favourable properties have been formulated as theo-

rems, formally proved and verified in a simulation example.

The supply chain management strategy proposed in this paper

is computationally efficient and straightforward in software

implementation.
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