Ireneusz GRUBECKI¹, Anna ZALEWSKA²

e-mail: ireneusz.grubecki@utp.edu.pl

¹ Zakład Inżynierii Chemicznej i Bioprocesowej, ² Zakład Technologii Polimerów i Powłok Ochronnych, Wydział Technologii i Inżynierii Chemicznej, Uniwersytet Technologiczno-Przyrodniczy, Bydgoszcz

Optymalna temperatura strumienia zasilającego reaktor rurowy do rozkładu H₂O₂ ze stałym złożem katalazy *Terminox Ultra*: Analiza przepływu tłokowego

Wstęp

Reaktory rurowe ze stałym złożem (bio)katalizatora są szeroko stosowane w przemyśle biochemicznym ze względu na prostą konstrukcję, niski koszt ich utrzymania, łatwe oddzielenie produktu od biokatalizatora oraz możliwość lepszego sterowania procesem [*Maria i Crisan*, 2015]. Projektowanie takich reaktorów jest trudnym zadaniem, przy rozwiązaniu którego przede wszystkim należy kierować się zasadą umiaru technologicznego. Wysoką wydajność procesów zachodzących w takich reaktorach uzyskuje się przy zapewnieniu optymalnych warunków operacyjnych, których dobór utrudnia dezaktywacja zastosowanego biokatalizatora. Szczególnym jej mechanizmem jest dezaktywacja równoległa (zależna od stężenia substratu), która różnicuje wartości stężenia substratu i aktywności enzymu wzdłuż długości reaktora i w czasie.

Wspomniane warunki operacyjne można osiągnąć dwojako, a mianowicie poprzez sterowanie natężeniem strumienia zasilającego reaktor oraz poprzez dobór jego temperatury. Pierwszy z wymienionych polega na sukcesywnym zmniejszaniu natężenie przepływu, co gwarantuje dłuższy czas kontaktu i w konsekwencji wyższy stopień przemiany. W takim jednak przypadku istnieje zagrożenie kontroli procesu zewnętrznymi i/lub wewnętrznymi oporami dyfuzyjnymi (EDR/IDR), których występowanie jest nieuniknione podczas pracy reaktorów ze stałym złożem biokatalizatora i należy do głównych wad stosowania takich reaktorów.

Drugą zmienną sterującą jest temperatura strumienia zasilającego. Przy niższych temperaturach jej wzrost faworyzuje przebieg reakcji. Wyrost temperatury w zakresie wyższych jej wartości powoduje wzrost szybkości dezaktywacji, i tym samym spadek szybkości reakcji. Zatem istnieje temperatura zapewniająca kompromis pomiędzy szybkością reakcji i dezaktywacji zapewniająca maksymalny stopień przemiany na wylocie z reaktora.

Celem pracy było poszukiwanie optymalnej temperatury strumienia zasilającego, która przy stałym jego natężeniu oraz dolnym i górnym ograniczeniu temperaturowym maksymalizuje przeciętny stopień przemiany H_2O_2 rozkładanego przez katalazę *Terminox Ultra* immobilizowaną na nieporowatych kulkach szklanych. W analizie uwzględniono wpływ zewnętrznych i wewnętrznych oporów dyfuzyjnych wyrażony globalnym współczynnikiem efektywności. Parametry kinetyczne oraz te charakteryzujące transport masy uzyskano podczas badań eksperymentalnych nad analizowanym procesem, prowadzonym w reaktorze modelowym [*Grubecki, 2016a, b*].

Model matematyczny i jego rozwiązanie

Przez izotermiczny reaktor rurowy ze stałym złożem immobilizowanej katalazy *Terminox Ultra*, przepływa tłokowo z prędkością przepływu $U_{\rm S}$ roztwór H₂O₂ o stężeniu $C_{\rm S,In} = 5 \cdot 10^{-3}$ mol·dm⁻³. Model matematyczny reaktora w formie bezwymiarowej opisuje następujący układ równań [*Grubecki, 2016a*]:

$$\frac{\partial \overline{C}_{S}}{\partial \tau} + \frac{\partial \overline{C}_{S}}{\partial z} = -\eta_{G}\beta_{I}\overline{C}_{E}\overline{C}_{S} \qquad \overline{C}_{S}(z=0,\tau) = 1$$
(1a)

$$\frac{\partial \overline{C}_{\rm E}}{\partial \tau} = -\eta_{\rm G} \beta_2 \overline{C}_{\rm E} \overline{C}_{\rm S} \qquad \overline{C}_{\rm E}(z,\tau=0) = 1 \qquad (1b)$$

gdzie:

$$\overline{C}_{\rm S} = \frac{C_{\rm S}}{C_{\rm S,In}}, \overline{C}_{\rm E} = \frac{C_{\rm E}}{C_{\rm E0}}, \tau = t \frac{U_{\rm S}}{H}, z = \frac{h}{H}, \beta_{\rm I} = \frac{H}{U_{\rm S}} k_{\rm R} C_{\rm E0}, \beta_{\rm 2} = \frac{H}{U_{\rm S}} k_{\rm D} C_{\rm S,In}$$

natomiast stałe szybkości reakcji $k_{\rm R}C_{\rm E0}$ i dezaktywacji $k_{\rm D}$ opisuje równanie Arrheniusa. W modelu matematycznym (Rów. (1)) h oznacza współrzędną osiową. $C_{\rm S}$, $C_{\rm E0}$ i $C_{\rm E}$ oznaczają odpowiednio stężenie substratu, aktywność początkową i operacyjną enzymu oraz H wysokość wypełnienia. Globalny współczynnik efektywności występujący w modelu (1) opisany jest poniższym równaniem

$$\eta_{\rm G} = \frac{{\rm Bi}[\tanh^{-1}(3\phi) - (3\phi)^{-1}]}{\phi[{\rm Bi} - 1 + 3\phi\tanh^{-1}(3\phi)]}$$
(2)

W równaniu (2) Bi oraz ϕ oznaczają odpowiednio liczbę *Biota* ($Bi = k_{mL}d_{P}/6D_{eff}$) oraz moduł *Thielego* ($\phi = d_{P}/6(k_{R}C_{E0}/D_{eff})^{0.5}$), d_{P} – średnicę peletki i D_{eff} – efektywny współczynnik dyfuzji.

W obliczeniach uwzględniono najniższą wartość globalnego współczynnika efektywności (równ. (2)) odpowiadającą aktywności świeżego biokatalizatora oraz stałym kinetycznym dla reakcji i dezaktywacji wolnym od oporów dyfuzyjnych [*Palazzi i Converti, 2001*]. Dla takiej sytuacji możliwe jest analityczne rozwiązanie sformułowanego modelu (1). W tym celu konieczne jest wprowadzenie transformacji $\tau^{\bullet} = \tau - z$, $z^{\bullet} = z$, przez co układ równań (1) przyjmuje postać

$$\frac{\partial C_{\rm S}}{\partial z^{\bullet}} = -\eta_{\rm G} \beta_1 \overline{C}_{\rm E} \overline{C}_{\rm S} \qquad \overline{C}_{\rm S} (z^{\bullet} = 0, \tau^{\bullet}) = 1 \qquad (3a)$$

$$\frac{\partial \overline{C}_{\rm E}}{\partial \tau^{\bullet}} = -\eta_{\rm G} \beta_2 \overline{C}_{\rm E} \overline{C}_{\rm S} \qquad \overline{C}_{\rm E}(z^{\bullet}, \tau^{\bullet} = 0) = 1 \tag{3b}$$

Po podzieleniu stronami równ. (3a) i (3b) oraz stosowanych przekształceniach uzyskuje się

$$\frac{\partial^2 f}{\partial z^{\bullet} \partial \tau^{\bullet}} = -\eta_{\rm G} \beta_{\rm I} \frac{\partial f}{\partial z^{\bullet}} \frac{\partial f}{\partial \tau^{\bullet}} \tag{4}$$

gdzie $f(z^{\bullet}, \tau^{\bullet})$ jest funkcją spełniająca poniższe równania

$$\overline{C}_{\rm S} = \frac{\beta_1}{\beta_2} \frac{\partial f}{\partial \tau^{\bullet}} \quad \wedge \quad \overline{C}_{\rm E} = \frac{\partial f}{\partial z^{\bullet}} \tag{5}$$

Dokonując podstawienia $f(z^{\bullet}, \tau^{\bullet}) = (\eta_G \beta_I)^{-1} \ln[w(z^{\bullet}, \tau^{\bullet})]$, równ. (4) z warunkami brzegowymi można przepisać w postaci

$$\frac{\partial^2 w}{\partial z^{\bullet} \partial \tau^{\bullet}} = 0 \tag{6}$$

 $w(z^{\bullet}, \tau^{\bullet} = 0) = \exp(\eta_{G}\beta_{1}z^{\bullet}) \quad w(z^{\bullet} = 0, \tau^{\bullet}) = \exp(\eta_{G}\beta_{2}\tau^{\bullet})$ (7) Po scałkowaniu równ. (7), z uwzględnieniem warunków brzegowych (8) uzyskuje się rozwiązanie modelu (1) [*Altomare i in., 1974*]:

$$\overline{C}_{S}(z,\tau) = \frac{\exp[\eta_{G}\beta_{2}(\tau-z)]}{\exp(\eta_{G}\beta_{1}z) + \exp[\eta_{G}\beta_{2}(\tau-z)] - 1}$$
(8)

$$\overline{C}_{\rm E}(z,\tau) = \frac{\exp(\eta_{\rm G}\beta_1 z)}{\exp(\eta_{\rm G}\beta_1 z) + \exp[\eta_{\rm G}\beta_2(\tau-z)] - 1} \tag{9}$$

Wyniki i dyskusja

Rozwiązanie problemu optymalizacyjnego polega na znalezieniu temperatury strumienia zasilającego $T_{\text{In,opt}}$, dla której funkcja

$$\alpha_{m,h=1} = \frac{1}{\tau_{\rm f}} \int_{0}^{\tau} [1 - \overline{C}_{\rm S}(z=1,x)] dx$$
(10)

a)

osiągnie wartość maksymalną w przedziale $[T_{min}, T_{max}]$. Chociaż możliwe jest analityczne rozwiązanie sformułowanego zagadnienia, w poszukiwaniu temperatury $T_{In,opt}$ posłużono się procedurą optymalizacyjną *fininbnd* z dolnym T_{min} i górnym T_{max} ograniczeniem temperaturowym zawartą w *Optimization Toolbox* programu *MATLAB* (*Mathworks Inc.*, Natick MA, USA).

Na rys. 1 zobrazowano zmiany średniego stopnia przemiany na wylocie z reaktora ($\alpha_{m,h=1}$) w zależności od temperatury strumienia zasilającego (T_{In}). Można zauważyć, że dla dużych prędkości U_S ze wzrostem T_{In} przeciętny stopień przemiany maleje, natomiast dla niskich wartości U_S przeciętna wartość $\alpha_{m,h=1}$ wzrasta. Zatem, istnieją $U_{S,gr}$, dla których można wskazać taką wartość temperatury ($T_{In,opt}$), przy której przeciętny stopień przemiany na wylocie z reaktora osiągnie wartość maksymalną. Należy zaznaczyć, że ze spadkiem prędkości przepływu strumienia zasilającego wzrastają zewnętrzne opory dyfuzyjne, a zatem maleje wartość globalnego współczynnika efektywności.

Rys. 1. Zależność $\alpha_{m,h=1}$ vs. T_{ln} dla biokatalizatora o średnicy $d_P = 5 \cdot 10^4$ m (linia ciągła) i $d_P = 10 \cdot 10^4$ m (linia przerywana) dla $C_{S,ln} = 5 \cdot 10^{-3}$ kmol m⁻³. Otwarte symbole wskazują maksymalną wartość stopnia przemiany

Rys. 2. Dyskretna zależność $T_{\text{in.opt}}$ vs. U_{S} dla biokatalizatora o średnicy $d_{\text{P}} = 5 \cdot 10^4 \text{ m}$ (o) i $d_{\text{P}} = 10 \cdot 10^4 \text{ m}$ (×) dla $C_{\text{S,In}} = 5 \cdot 10^{-3} \text{ kmol m}^{-3}$

Rys. 2 przedstawia zależność optymalnej temperatury strumienia zasilającego ($T_{\text{In,opt}}$) od jego prędkości przepływu (U_{S}). Im szybciej roztwór H₂O₂ przepływa przez reaktor, tym niższa temperatura $T_{\text{In,opt}}$. Jest to wynikiem obniżenia stopnia przemiany będącego konsekwencją skrócenia czasu przebywania roztworu H₂O₂ w złożu biokatalizatora.

Ponadto wartości temperatury optymalnej ($T_{\text{In,opt}}$) zamieszczone w tab. 1 i 2 sugerują, że im niższa zawartość H_2O_2 w strumieniu zasilającym reaktor (Tab. 1) oraz im mniej enzymu zostanie użyte

Tab. 1. Optymalna temperatura strumienia zasilającego $T_{\text{In.opt}}$ jako funkcja stężenia $C_{\text{S.In}}$ oraz prędkości przepływu U_{S}

$C_{\rm S,In} \cdot 10^3$	$U_{\rm S} \cdot 10^4$, [m s ⁻¹]									
[kmol m ⁻³]	10	20	30	40	50	60	70	80		
2	323,0	322,5	315,1	310,2	306,7	303,9	301,8	300,1		
5	316,6	304,4	298,0	293,9	293,0	293,0	293,0	293,0		
8	307,3	296,0	293,0	293,0	293,0	293,0	293,0	293,0		

Tab. 2. Optymalna temperatura strumienia zasilającego $T_{\text{In,opt}}$ jako funkcja aktywności katalazy $k_{\text{R}}C_{\text{E0}}$ oraz prędkości przepływu U_{S} dla $C_{\text{S,In}} = 5 \cdot 10^{-3}$ kmol m⁻³

$k_{\rm R}C_{\rm E0}$	$U_{\rm S} \cdot 10^4$, [m s ⁻¹]								
[s ⁻¹]	10	20	30	40	50	60	70	80	
37,86	312,2	300,5	294,4	293,0	293,0	293,0	293,0	293,0	
47,33	316,6	304,4	298,0	293,9	293,0	293,0	293,0	293,0	
56,80	320,3	307,7	301,1	296,8	293,7	293,0	293,0	293,0	

Rys. 4. Rozkład a) stężenia nadtlenku wodoru, b) aktywności katalazy w złożu dla $T_{\text{Inopt}} = 296,5\text{K}, U_S = 3,32 \cdot 10^3 \text{ m s}^{-1}, C_{S,\text{In}} = 5 \cdot 10^3 \text{ kmol m}^3 \text{ i } \pi = 532 (\eta_G = 0,19 (pł. dolna), \eta_G = 0,15 (pł. środkowa), \eta_G = 0,05 (pł. górna)). Temp. procesu 296,5\text{K}$

Wnioski

Prowadząc proces rozkładu nadtlenku wodoru w reaktorze rurowym ze stałym złożem immobilizowanej katalazy można wskazać temperaturę strumienia zasilającego reaktor $T_{\rm In,opt}$, dla której przeciętny stopień przemiany na wylocie z reaktora osiąga wartość maksymalną lub największą. Temperatura ta wzrasta ze spadkiem prędkości przepływu strumienia zasilającego oraz jego stężenia jak również ze wzrostem ilości użytego enzymu.

LITERATURA

- Altomare R.E., Kohler J., Greenfield P.F., Kittrell J.R., (1974). Deactivation of immobilized beef liver catalase by hydrogen peroxide. *Biotechnol. Bioeng.*, 16(12), 1659-1673. DOI: 10.1002/bit.260161208
- Grubecki I., (2016b). Ocena zewnętrznych oporów dyfuzyjnych w procesie rozkładu H_2O_2 prowadzonym w bioreaktorze ze złożem stałym. *Inż. Ap. Chem.*, 55(4), 134-135
- Grubecki I., (2016a). Rozkład nadtlenku wodoru w reaktorze ze stałym złożem immobilizowanej katalazy Terminox Ultra: Ocena kinetycznych parametrów biotransformacji. *Inż. Ap. Chem.*, 55(5), 180-181
- Maria G., Crisan M., (2015). Evaluation of optimal operation alternatives of reactors used for d-glucose oxidation in a bi-enzymatic system with a complex deactivation kinetics. *Asia-Pacific J. Chem. Eng.*, 10(1), 22-44. DOI: 10.1002/apj.1825
- Palazzi E., Converti A., (2001). Evaluation of diffusional resistances in the process of glucose isomerization to fructose by immobilized glucose isomerase. *Enzyme Microb. Technol.*, 28(2-3), 246-252. DOI: 10.1016/S0141-0229(00)00323-9