PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of research on hydrogen admission into the existing natural gas infrastructure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd prac badawczych dotyczących procesu zatłaczania wodoru do istniejących systemów gazowniczych
Języki publikacji
EN
Abstrakty
EN
The article presents the review of the current state of research with the aim of understanding the problems associated with hydrogen injection into the gas grid and its impact on end use. The review focuses on the field of the sensitivity of individual components of the gas system to increased hydrogen concentration. The work presents software-based gas quality tracking problem in gas distribution network and discusses the steady-state modelling and the effect of hydrogen injection on the operational behaviour of the gas grid under consideration.
PL
W artykule dokonano przeglądu aktualnego stanu wiedzy w zakresie projektów badawczych obejmujących proces zatłaczania wodoru do sieci gazowych oraz jego wpływ na odbiorniki gazowe. Omówiono dostępne w literaturze wyniki badań wrażliwości poszczególnych elementów systemu gazowniczego na podwyższone stężenie wodoru. Zaprezentowano softwarową metodę śledzenia jakości gazu w sieciach dystrybucyjnych i związany z nią problem obliczeniowy sieci w stanach ustalonych oraz omówiono wyniki badań wpływu zatłaczania wodoru na parametry eksploatacyjne przykładowej sieci gazowej.
Rocznik
Tom
Strony
7--12
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • District Heating and Gas Systems Division Warsaw University of Technology Nowowiejska 20
Bibliografia
  • [1] J. Speirs, P. Balcombe, E. Johnson, J. Martin, N. Brandon, A. Hawkes. A greener gas grid: What are the options. Energy Policy, Volume 118, July 2018, Pages 291-297.
  • [2] European Commission. A hydrogen strategy for a climate-neutral Europe. Retrieved from https://knowledge4policy.ec.europa.eu/publication/communi-cation-com2020301 -hydrogen-strategy-cIimate-neutral-europe_en [Accessed: December 2021].
  • [3] European Commission. EU strategy on energy system integration. Retrieved from https://ec.europa.eu/energy/topics/energy-system-integration/eu-strategy-energy-system-integration_en [Accessed: December 2021].
  • [4] Call for Recognising the Role of Blending Hydrogen into the Existing Gas Networks, Open Letter, Brussels, 17 March 2021, https://www.marcogaz.orW wp-content/uploads/2021/03/SCs-Joint-Letter-21-01.pdf [Accessed: December 2021] The European Hydrogen Backbone vision, https://gasforclimate2050.eu/ehb [Accessed: December 2021].
  • [5] The European Hydrogen Backbone vision, https://gasforclimate2050.eu/ehb [Accessed: December 2021].
  • [6] European Commission. Impact of the use of the biomethane and hydrogen potential on trans-European infrastructure. Retrieved from https://ec.europa.eu/energy/studies_main/final_studies/impact-use-biomethane-and-hydrogen-potential-trans-european-infrastructure_en.
  • [7] Leeds CityGate project. https://h21.green/projects/h21-leeds-city-gate/ [Accessed: December 2021].
  • [8] HyHouse Project. https://www.kiwa.com/gb/en/areas-of-expertise/hydrogen/kiwa-uk-hydrogen-case-studies/hyhouse-case-study-hydrogen/ [Accessed: December 2021].
  • [9] HyDeploy Project. https://hydeploy.co.uk/ [Accessed: December 2021].
  • [10] HyNet project. https://hynet.co.uk/.
  • [11] Hy4Heat project https://www.hy4heat.info/.
  • [12] H2HoWi project https://www.eon.com/en/about-us/media/press-release/2020/unique-project-in-germany-natural-gas-pipeline-is-converted-to-pure-hydrogen.html.
  • [13] HYPOS project https://www.hypos-eastgermany.de/en/.
  • [14] Health and Safety Executive, The Gas Safety (Management) Regulations 1996 (GSMR).
  • [15] IEA. Current limits on hydrogen blending in natural gas networks. Retrieved from https://www.iea.org/data-and-statistics/charts/current-limits-on-hydrogen-blend-ing-in-natural-gas-networks-and-gas-demand-per-capita-in-selected-locations.
  • [16] EA Polman, et al. Reduction of CO2 emissions by adding hydrogen to natural gas. GASTEC Technology BV, Apeldoorn, The Netherlands (2003).
  • [17] Müller-Syring G., Henel M., Köppel W., Mlaker H., Sterner M., Höcher T.: Entwicklung von modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan ins Erdgasnetz. Projekt G1-07-10 DVGW Bonn 2013 (in German).
  • [18] Marcogaz. Overview of test results & regulatory limits for hydrogen admission into existing natural gas infrastructure & end use. Retrieved from: https://www. marcogaz.org/publications/overview-of-test-results-regulatory-limits-for-hydrogen-admission-into-existing-natural-gas-infrastructure-end-use/ [Accessed: December 2021].
  • [19] R. Kurz, M. Lubomirsky, F. Bainier: Hydrogen in pipelines: Impact of hydrogen transport in natural gas pipelines. In.: Proceedings of ASME Turbo Expo 2020 Turbomachinery Technical Conference and Exposition GT2020, June 22-26, 2020, London, England. GT2020-14040.
  • [20] Altfeld K., Pinchbeck D.: Admissible hydrogen concentrations in natural gas systems, DIV Deutscher Industrieverlag, gas for energy 3 (2013) 1-12.
  • [21] DIN 51624:2008-02 Kraftstoffe fur Kraftfahrzeuge - Erdgas Anforderungen und Prüfverfahren (in German).
  • [22] ISO 11439:2013 Gas cylinders - High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles.
  • [23] Śmiałowski M. Hydrogen in Steel. Effect of Hydrogen on Iron and Steel During Production, Fabrication, and Use. Pergamon Press, Reading 1962.
  • [24] ETN, Hydrogen Gas Turbines, the path towards a zero-carbon gas turbine, ETN Report, Brussels, Belgium, 2020. Retrieved from: hops://etn.global/news-and-events/news/hydrogen-gas-turbines-report/ [Accessed: December 2021].
  • [25] Mitsubishi Power, Ltd. The hydrogen gas turbine, successfully fired with a 30% fuel mix, is a major step towards a carbon-free society. Retrieved from: https://power.mhi.com/special/hydrogen/article_1 [Accessed: December 2021].
  • [26] N. Clemens, V. Raman: Predictive LES Modeling and Validation of High-Pressure Turbulent Flames and Flashback in Hydrogen-enriched Gas Turbines. Final Scientific/Technical Report (No. DOE-FE0012053). The University of Texas at Austin. 2019.
  • [27] B. Korb, S. Kawauchi, G. Wachtmeister: Influence of hydrogen addition on the operating range, emissions and efficiency in lean burn natural gas engines at high specific loads. Fuel 164 (2016), 410-418.
  • [28] A. Sofianopoulos, D.N. Assanis, S. Mamalis: Effects of hydrogen addition on automotive lean-bum natural gas engines: critical review J Energy Eng, 142(2) (2015), E4015010.
  • [29] Huang Z., Zhang Y., Zeng K., Liu B., Wang Q., Jiang D.: Measurements of laminar burning velocities for natural gas - hydrogen-air mixtures. Combustion and Flame 146 (2006), No. 1, 302-311.
  • [30] Zhang M., Wang J., Xie Y, Jin W., Wei Z., Huang Z., Kobayashi H.: Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. International Journal of Hydrogen Energy 38 (2013) No. 26, 11421-11428.
  • [31] C.J.Quarton, S. Samsatli: Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling? Renewable and Sustainable Energy Reviews 98 (2018), 302-316.
  • [32] Tabkhi, F., Azzaro-Pantel, C., Pibouleau, L., Domenech, S.: A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. International Journal of Hydrogen Energy 33 (2008), No. 21, 6222-6231.
  • [33] Gondal I.A., Sahir M.H.: Prospects of natural gas pipeline infrastructure in hydrogen transportation. International Journal of Energy Research 36 (2012), No. 15, 1338-45.
  • [34] André J., Auray S., De Wolf D., Memmah M. M., Simonnet A.: Time development of new hydrogen transmission pipeline networks for France. International Journal of Hydrogen Energy 39 (2014), No. 20, 10323-10337.
  • [35] Abeysekera M., Wu J., Jenkins N., Rees M.: Steady state analysis of gas networks with distributed injection of altemative gas. Applied Energy 164 (2015) 991-1002.
  • [36] Clegg S., Mancarella P.: Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon power systems. [ET Gener. Transm. Distrib. 10 (2016), No. 3, 566-575.
  • [37] Osiadacz A.J.: Simulation and analysis of gas networks, Gulf Publishing Company, Houston, TX 1987.
  • [38] M. Chaczykowski, A. J. Osiadacz: "Power-to-gas technologies in terms of the integration with gas networks," Trans. IFFM, vol. 137, pp. 85-103, 2017.
  • [39] A.J. Osiadacz, M. Chaczykowski, Modeling and simulation of gas distribution networks in a multienergy system environment, Proceedings of the IEEE 108 (2020) 1580-1595.
  • [40] A.J. Osiadacz, M. Chaczykowski, Ł. Kotyński, M. Kwestarz: Statyczna symulacja sieci gazowych z wieloma źródłami o zróżnicowanej jakości gazu. Przemysł Chemiczny 98 (2), 2019, 293-297.
  • [41] A.J. Osiadacz, Ł. Kotyński, M. Chaczykowski: SimNet-pakiet oprogramowania do statycznej symulacji sieci gazowych o dowolnej strukturze. Gaz, Woda i Technika Sanitarna 2021, Nr 9, s. 2-10.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e982fd41-2877-4118-9347-2c350d2e85be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.