PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Ti and Fe on the Microstructure and Properties of Copper and Copper Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses issues related to the technology of melting and processing of copper alloys. An assessment was made of the impact of titanium and iron introduced in the form of pre-alloy - Ti73Fe master alloy on the microstructure and selected properties of pure copper and copper-silicon alloy. There are known examples of the use of titanium and iron additive to the copper alloy. Titanium as an additive introduced to copper alloys to improve their properties is sometimes also applicable. In the first stage of the study, a series of experimental castings were conducted with variable content of Ti73Fe master alloy entering copper in quantities of 5 %, 15 %, 25 % in relation to the mass of the metal charge. In the second stage, a silicon additive was introduced into copper in the amount of about 4 % by weight and 0.5 % and 1 % respectively of the initial Ti73Fe alloy. Thermodynamic phase parameters were modelled using CALPHAD method and Thermo-Calc software, thus obtaining the crystallization characteristics of the test alloys and the percentage of structural components at ambient temperature. Experiments confirmed the validity of the use of Ti73Fe master alloy as an additive. The pre-alloy used showed a favourable performance, both in terms of addition solubility and in the area of improvement of strength properties. Changes were achieved in the microstructure, mainly within the grain, but also in the developed dendrites of the solid solution. Changes occur with the introduction of titanium with iron into copper as well as to two-component silicon bronze.
Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
Bibliografia
  • [1] Rzadkosz, S., Garbacz-Klempka, A., Kozana, J., Piękoś, M. & Kranc, M. (2014). Structure and properties research of casts made with copper alloys matrix. Archives of Metallurgy and Materials. 59(2), 775-778.
  • [2] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Kozana, J. & Piękoś, M. (2015). Refining Processes in the Copper Casting Technology. Metalurgija. 54(1), 259-262.
  • [3] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Piękoś, M., Kozana, J. & Cieślak, W. (2014). Research on technology of alloyed copper casting. Archives of Foundry Engineering. 14(2), 79-84.
  • [4] Eze, A.A., Jamiru, T., Sadiku, E.R., Durowoju, M.O., Kupolati, W.K., Ibrahim, I.D., Obadele, B.A., Olubambi, P.A. & Diouf, S. (2018). Effect of titanium addition on the microstructure, electrical conductivity and mechanical properties of copper by using SPS for the preparation of Cu-Ti alloys. Journal of Alloys and Compounds. 736, 163-171. DOI:10.1016/j.jallcom. 2017.11.129.
  • [5] Takahashi, T., Hashimoto, Y. & Koyama, K. (1989). Effect of Ti and Zr Additions on the Internal Oxidation of Cu–Si Alloy. Materials Transactions, JIM. 30(2), 127-136. DOI:10.2320/matertrans1989.30.127.
  • [6] Polok-Rubiniec; M., Konieczny; J., Labisz, K. & Włodarczyk-Fligier, A., (2016). Microstructure and Service Properties of Copper Alloys. Archives of Metallurgy and Materials. 61(3), 1277-1282. DOI:10.1515/amm-2016-0211.
  • [7] Rzadkosz, S. (2013). Foundry of copper and copper alloys (Odlewnictwo miedzi i jej stopów). Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
  • [8] Rdzawski, Z. (2009). Alloy copper. (Miedź stopowa), Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).
  • [9] Rdzawski, Z.M., Stobrawa, J. & Głuchowski, W. (2009) Structure and properties of CuFe2 alloy. Journal of Achievements in Materials and Manufacturing Engineering. 33(1), 7-18.
  • [10] Kim, H.G., Han, S.Z., Euh, K. & Lim, S.H. (2011). Effects of C addition and thermo-mechanical treatments on microstructures and properties of Cu–Fe–P alloys. Materials Science and Engineering: A. 530, 652-658. DOI: 10.1016/j.msea.2011.10.041.
  • [11] Dong, Q.Y., Shen, L.N., Cao, F., Jia, Y.L., Liao, K.L.& Wang, M.P. (2015) Effect of thermomechanical processing on the microstructure and properties of a Cu–Fe–P alloy. Journal of Materials Engineering and Performance. 24, 1531-1539. DOI: 10.1007/s11665-014-1352-6.
  • [12] Fernee, H., Nairn, J. & Atrens, A. (2001) Precipitation hardening of Cu-Fe-Cr alloys part I Mechanical and electrical properties. Journal of Materials Science. 36, 2711-2719. DOI: 10.1023/A:1017916930459.
  • [13] Lu, D.P., Wang, J., Zeng, W.J., Liu, Y., Lu, L. & Sun, B.D. (2006). Study on high-strength and high-conductivity Cu–Fe–P alloys. Materials Science and Engineering: A. 21, 254-259. DOI: 10.1016/j.msea.2006.01.068.
  • [14] Stobrawa, J., Ciura, L. & Rdzawski, Z. (1996). Rapidly solidified strips of Cu-Cr alloys. Scripta Materialia. 34(11), 1759-1763. DOI:10.1016/1359-6462(96)00053-X.
  • [15] Pang, Y., Xia, C., Wang, M., Li, Z., Xiao, Z. & Wie, H. (2014). Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu–Cr alloy. Journal of Alloys and Compounds. 582, 786-792. DOI: 10.1016/j.jallcom. 2013.08.146.
  • [16] Dobatkin, S.V., Gubicza, J., Shangina, D.V., Bochvar, N.R. & Tabachkova, N.Y. (2015). High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation, Materials Letters. 153, 5-9. DOI: 10.1016/j.matlet. 2015.03.144.
  • [17] Batra, I.S., Dey, G.K., Kulkarni, U.D. & Banerjee, S. (2003). Precipitation in a Cu–Cr–Zr alloy. Materials Science and Engineering: A, 356(1-2), 32-36. DOI: 10.1016/S0921- 5093(02)00852-3.
  • [18] Liu, Y., Li, Z., Jiang, Y., Zhang, Y., Zhou, Z., & Lei, Q. (2017). The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal-mechanical treatment. Journal of Materials Research. 32(7), 1324-1332. DOI: 10.1557/jmr. 2017.17.
  • [19] Kermajani, M., Raygan, Sh., Hanayi, K. & Ghaffari, H. (2013). Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu–Cr–Zr alloy. Materials & Design. 51, 688-694. DOI: 10.1016/j.matdes.2013.04.062.
  • [20] Srikanth, S. & Jacob, K.T. (1989). Thermodynamic properties of Cu–Ni alloys: measurements and assessment. Materials Science and Technology. 5(5), 427-434, DOI: 10.1179/mst.1989.5.5.427.
  • [21] Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Rabkin, E., Goll, D., Schütz, G., Baretzky, B. & Valiev, RZ. (2012). Deformation-driven formation of equilibrium phases in the Cu-Ni alloys. Journal of Materials Science. 47, 360-367. DOI: 10.1007/s10853-011-5805-0.
  • [22] Mathiyarasu, J., Palaniswamy, N. & Muralidharan, V. (2000). Corrosion Resistance of Cuupronickels – An Overview. Corrosion Reviews. 18(1), 2000, 65-103. DOI: 10.1515/ corrrev.2000.18.1.65.
  • [23] Taher, A. (2015). Corrosion Behavior of Copper-Nickel Alloy in Marine Environment (Review Paper). Applied Mechanics and Materials. 799-800, 222-231. DOI: 10.4028/www.scientific.net/ AMM.799-800.222.
  • [24] Nagarjuna, S., Srinivas, M., Balasubramanian, K., & Sarma, D.S. (1999). On the variation of mechanical properties with solute content in Cu–Ti alloys. Materials Science and Engineering: A, 259(1), 34-42. DOI: 10.1016/S0921-5093(98)00882-X.
  • [25] Nagarjuna, S., Balasubramanian, K., & Sarma, D.S. (1999). Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys. Journal of materials science, 34(12), 2929-2942. DOI: 10.1023/ A:1004603906359.
  • [26] Suzuki, S., Hirabayashi, K., Shibata, H., Mimura, K., Isshiki, M. & Waseda, Y. (2003) Electrical and thermal conductivities in quenched and aged high-purity Cu–Ti alloys. Scripta Materialia. 48(4), 431-435. DOI: 10.1016/S1359-6462(02)00441-4.
  • [27] Soffa, W.A., & Laughlin, D.E. (2004). Highstrength age hardening copper–titanium alloys: redivivus. Progress in Materials Science. 49(3-4), 347-366. DOI: 10.1016/S0079-6425(03)00029-X.
  • [28] Semboshi, S., & Konno, T.J. (2008). Effect of aging in hydrogen atmosphere on electrical conductivity of Cu–3at.% Ti alloy. Journal of Materials Research, 23(2), 473-477. DOI: 10.1557/jmr.2008.0050.
  • [29] Semboshi, S., & Takasugi, T. (2013). Fabrication of high-strength and high-conductivity Cu-Ti alloy wire by aging in a hydrogen atmosphere. Journal of Alloys and Compounds, 580, S397-S400.
  • [30] Kurdewan, T., Zilly, A. (2019). Copper alloys with titanium - Mechanisms of action of low alloy contents in materials with high strength and good conductivity (Kupferlegierungen mit Titan - Wirkmechanismen geringer Legierungsanteile in Werkstoffen mit hoher Festigkeit und guter Leitfähigkeit). Metall. 11, 436-439. (in German).
  • [31] Vorotilo, S., Loginov, P.A., Kovalev, D.Yu. & Levashov, E.A. (2020). DFT – Driven design of hierarchically structured, strong and highly conductive alloys in Cu–Ti system via in situ hydration - re-oxidation. Journal of Alloys and Compounds. 832, 154823. DOI: 10.1016/j.jallcom.2020.154823.
  • [32] Wei, H., Dai, X., Han, P., Wei, Y. & Hou, L. (2020). Surface mechanical attrition treatment-induced dissolution of Cu4Ti precipitates in Cu-4wt-%Ti alloy. Materials Science and Technology. 36(6), 661-667. DOI: 10.1080/02670836.2020.1726600.
  • [33] Kranc, M., Sikora, G., Górny, M. & Garbacz-Klempka, A. (2017) The Influence of Mg Additive on the Structure and Electrical Conductivity of Pure Copper Castings. Archives of Foundry Engineering. 17(4), 85-90. DOI: 10.1515/afe-2017-0135.
  • [34] Arnberg, L, Backmark, U., Bäckström, N. & Lange, J. (1986). A new high strength, high conductivity Cu-0.5wt.%Zr alloy produced by rapid solidification technology. Materials Science and Engineering. 83(1), 115-121. DOI:10.1016/0025-5416(86)90178-3.
  • [35] Kumar, K.C., Ansara, I., Wollants, P. & Delaey L. (1996). Thermodynamic Optimization of the Cu-Ti System. Zeitschrift fur metallkunde. 87(8), 666-672.
  • [36] Dumitrescu, L.F.S., Hillert, M. & Saunders N. (1998). Comparison of Fe-Ti Assessments. Journal of phase equilibria. 19(5), 441-48. DOI: 10.1361/ 105497198770341923.
  • [37] Swartzendruber, L.J. (1993) Cu-Fe (Copper-Iron). Phase Diagrams of Binary Iron Alloys. ASM International, Materials Park, 131-37.
  • [38] Raghavan, V. (2002). Cu-Fe-Ti (Copper-Iron-Titanium). Journal of Phase Equilibria. 23, 172 DOI: 10.1361/1054971023604152.
  • [39] Garbacz-Klempka, A., Kozana, J., Piękoś, M., Papaj, M., Papaj, P. & Perek-Nowak M. (2018). Influence of modification in centrifugal casting on microstructure and mechanical properties of silicon bronzes. Archives of Foundry Engineering. 18(3), 11-18. DOI: 10.24425/123594.
  • [40] Wróbel, M. & Burbelko, A. (2015). CALPHAD method - a modern technique for obtaining thermodynamic data (Metoda CALPHAD - nowoczesna technika pozyskiwania danych termodynamicznych). Archives of Foundry Engineering. 14(spec.3). 79-84 (in Polish).
  • [41] Wang, C., Huang, F., Lu, Y., Yang, S., Yang, M. & Liu, X. (2013). Experimental Investigation and Thermodynamic Calculation, Journal of ELECTRONIC MATERIALS. 42(10), 2961-2974. DOI: 10.1007/s11664-013-2695-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e982a68b-9d27-49ae-a649-03bae6f64462
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.