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FEED DRIVE SIMULATION FOR THE PREDICTION OF THE TOOL PATH 
FOLLOW UP IN HIGH SPEED MACHINING 

This paper deals with an advanced modeling of the feed drives of a five axis machine tool within the context  
of High Speed Machining. The management of the multi axes as well as high velocities causes problems to the 
set machine tool – Numerical Controller throughout the trajectory execution process. As a result, many errors are 
introduced during machining all process long affecting the surface quality. The paper aims at modeling the feed 
drive dynamics during trajectory follow-up including the current, the velocity and position loops as well as the 
feed forward terms, which characterize classical drives on actual HSM machines. It concerns translational axes 
as well as rotary axes. A procedure of identification is implemented. Performances of the model are assessed by 
the comparison between simulated tool paths to the real one. Experimental verifications of the virtual axis model 
are detailed for three and five axis trajectories presenting various types of geometrical discontinuities. 

1. INTRODUCTION 

 The elaboration process of free-form parts using 5-axis machining is a complex 
process which involves several steps. Based on geometrical and functional specifications,  
a CAD model of the part to be machined is created. From this CAD model, the trajectory  
of the tool which allows the complete part machining is calculated during the CAM step. 
The trajectory, generally calculated as a set of points and corresponding federates, defines 
the CL-file (or apt file) which is transmitted to the Numerical Unit (NC) of the machine 
tool. The NC unit translates the CAM trajectory into a set of axis commands to realize the 
part machining. The last step is the actual machining leading to the machined part. The 
process thus involves a large number of parameters, data transformations and information 
exchanges, which may affect global productivity and final part quality 0. 
 In order to apprehend the control of quality, the process can be split into 3 major 
stages, each one being considered separately (Fig. 1). The first one is the CAM stage which 
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transforms the CAD model into a tool trajectory giving the CL-file. Errors associated to this 
stage are generally linked to the discretization parameters used to calculate the tool path 0. 
The second stage concerns the transformation of the trajectory into axis commands by the 
NC unit. Two main treatment levels are associated to this stage 0. The level 1 (or numerical 
level) interprets in real time the program lines of the CL-file to develop axis commands. The 
level 2 (or analogue/digital level) corresponds to axis cards and drives which realize, after 
the converting of analogue data into digital data, the axis controls. 
The third stage is the actual machining on the machine tool, which in turn can be split into 
two levels. The first one, corresponding to the mechanical chain, creates the relative 
movement tool/part from the axis commands previously calculated. The second level, which 
is also the last level of the whole process, consists in the physical cutting process. Errors or 
loss of geometrical quality associated to this level come from both thermals and mechanical 
phenomena due to the cutting process as well as the structure deformations and dynamics 
phenomena occurring during machining. 
 

 
Fig. 1. High Speed Machining process 

 The prediction of such errors would require the modelling of the structure of the 
machine tool, the modelling of the dynamics during machining and the modelling of the 
mechanics of the cutting process itself, including tool and part deformations. 
 The present paper more particularly deals with errors and gaps associated to the NC 
treatments and the kinematics. For instance, interpolation operations or the Inverse 
Kinematics Transformation (IKT) calculated by the NC as well as performance of the servo 
drives and the kinematics directly affect the part geometry. With the objective of error 
prediction, a first model of trajectory execution has been defined [10,11,12]. By integrating 
kinematics performances, this model allows the simulation of the actual tool follow-up 
during machining, both at the kinematical level of each axis by determination of position, 
velocity, acceleration and jerk and at the relative movement tool/part. Results have 
highlighted that the NC treatment, in particular the stage of interpolation (level 1) is source 
of errors and approximations leading to geometrical deviations on the machined parts. 
However, in order to improve the simulation as regards the real behaviour, a modelling  
of the feed drives (level 2) separated from the modelling of the interpolator is necessary. It 
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would thus be possible to separate errors coming from the interpolator from those coming 
from the feed drives 0. Therefore, the paper aims at modelling the NC drives with the 
objective of evaluating errors imputable to level 2. Simulation results must be quite precise 
to be compared with all the errors involved. The axis drive model proposed is deliberatively 
simple to apply to any type of axis (translation or rotation) and whatever the industrial high-
speed machine tool. 

2. TOOL PATH FOLLOW-UP MODELING IN SERVO SYSTEMS 

2.1. MACHINE TOOL AXIS DRIVE PRINCIPLE 

 Common feedback structures used in industrial CNC drives are often based on  
a cascade control structure. A cascade structure consists of several nested loops which have 
increased dynamics (Fig. 2). The current inner loop aims at controlling the motor torque as 
the torque is directly proportional with the armature current. Its high bandwidth prevents 
from disturbances. The current loop is closed using a proportional integral (PI) control. The 
velocity central loop is also closed using a PI controller. It presents a smaller bandwidth 
controller. The position loop is the most external one with a larger sampling period. This 
last loop is closed using to a proportional gain. A velocity and torque feedforward actions 
are added to reduce the tracking error resulting from the lack of integrative action in the 
position controller 0. 
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Fig. 2. Axis control structure 

 The structure defined above is commonly used in industrial CNC drives with the major 
drawback that the structure is not open, essentially for historical and robustness reasons. 
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2.2. DYNAMIC MODEL OF FEED DRIVES 

 The modelling of tool path follow-up proposed in the paper relies on the feed drive 
structure presented in Fig. 2. In the next, axes are modelled in an independent way, 
neglecting the existing coupling interactions. To illustrate our purpose, only the modelling 
of the X translation axis is detailed here. Obviously, a similar modelling is built for the other 
translation axes as well as for the rotational axes. Axes affected by gravity are modelled 
quite differently: gravity is taken into account by adding a resistant torque to the motor. For 
a vertical axis, the torque is constant; for a tilting table the torque depends on the angular 
axis position. 
 The modelling concerns the level 2 of the CNC treatment and the realization of the 
movements by the kinematical chain. For each axis, the input of the model is the command 
calculated by the interpolator and transmitted to the axis cards. This command is the 
Position Set point at Entrance of the Controller (PSEC) 0. The main output of the model is 
the simulated position (SP). Other inner variables of the model such as current, motor 
torque, velocity and acceleration axis can be collected during simulation. 
As the model must be generic and simple, only few physical phenomena are deliberately 
modelled. Dynamic behaviour, such as vibrations, stiffness in joints, backlashes and other 
filters or compensations are not modelled at this step 0, 0, [20,19]. Nevertheless, to account 
for these phenomena and other numerical treatments, an adjustment parameter, called 
“delay” is set in both the position and feedforward loops. The complete model is 
implemented using the function Simulink of Matlab© (See Appendix). 
 In the next section, a strategy of parameter identification of the model is detailed in 
order to determine the axis dynamics. 

3. MODEL PARAMETER IDENTIFICATION 

 More generally, all the feedback controller parameters are available in the CNC, as 
well as the sampling periods of each loop. The parameters to be identified are thus, the 
equivalent inertia, the friction coefficients and the feedforward compensations. 
 In literature, many techniques for parameter identification exist. Some of them rely on 
frequency analysis by disconnecting the servo loops 0, 0. Global techniques are also 
proposed so that the overall closed loop dynamics is determined by running a standardized 
G-code and capturing the commanded and measured positions 0. Indeed, time-dependant 
variables, such as current, position, velocity and acceleration can be captured on the fly in 
most modern CNC systems. This method is used to determine parameters of the servo axis 
model. 

3.1. FRICTION MODELING AND PARAMETER IDENTIFICATION 

 In axis control, the dominant source of disturbance is friction. Several studies lead to 
the modelling of friction through relationships between friction, position, speed and 
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temperature of rigid bodies 0, 0. In this paper, the choice of a friction model depending only 
on axis velocity is made, as suggested in [14,13]. Static model considered here is the 
combination of viscous friction and Coulomb friction. The relevance of this modelling will 
be assessed during the identification phase. 
 The modelling of the friction law is obtained from the dynamic moment equation 
projected onto the axis of the motor shaft. This yields to Eq. 1., where Cm stands for the 
motor torque, Cr for resistant torques, Jeq for the equivalent inertia and Ωm for the angular 
velocity of the motor. 
 

                  
dt

d
JCC m

eqrm

Ω=− .                                      (1) 

 
 When acceleration is null (constant velocity displacement), the motor torque, which is 
directly proportional to the current, is equal to the resistant torque. It is thus possible to 
determine the real friction law by successive measures of the current for different constant 
velocity displacements. Then, a trend curve applied to experimental point models the real 
behaviour of friction with enough accuracy (Fig. 3). 

 

 

Fig. 3. Friction law and experimental results 

 Concerning the motor parameters, electric parameters are provided by the machine-
tool builder. Unfortunately, mechanical parameters which account for embedded masses and 
other inertias also require an experimental procedure of identification. 
 Equivalent inertia related to the motor shaft is calculated from a series of current 
measurements with non null acceleration displacements according to Eq. 2 which results 
from Eq. 1 where Kt stands for the own torque constant of the motor. 
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3.2. FEEDFORWARD AND SHIFT PARAMETERS 

 Feedforward is a common technique used to cancel dragging differences on the 
position 0. Two types of feedforward are modelled: the torque feedforward and the velocity 
feedforward which can be disabled, used separately or together. Feedforward set points 
(VFFWS and TFFWS) are generally proportional to velocity and acceleration set points at 
the entrance of the controller. Therefore, constants associated to the feedforward 
compensations can be evaluated from the measurement of the feedforward set points. 
Following the identification stage, the step of parameter adjustment is performed. 

3.3. MODEL ASSESSMENT 

 In order to assess the model, comparisons between simulations and experimental 
measures of the real tool position are carried out on a five axis milling centre Mikron UCP 
710 HSM – (RRTTT machine structure) – equipped with a Siemens Numerical Controller 
Sinumerik 840D. Different types of trajectories are tested, involving one, two or three axes. 
The measured signals for each type of trajectory are the position set points (mm), the current 
(A) and the velocity (m/min). 
 For all the tests, the machine is working without any charge and firstly the feedforward 
actions are cancelled. Testing one-axis displacement only permits to check independently 
each axis while being free from coupling problems. This series of test concerns both the 
axes of translation and the axes of rotation. Whatever the axis, all the experiments lead to 
similar results. Therefore, only tests of the X axis of translation are reported in Fig. 4.  
A linear displacement is programmed with a velocity of 15 m/min., with a jerk limited 
acceleration profile. The deviations between the measured and the simulated position 
oscillate around zero but do not exceed 4 µm except during critical phases of acceleration or 
deceleration. In these cases, differences can reach 6 or 8 µm. Considering that similar 
remarks can be made for other axes, differences between simulation and actual values are 
weak enough to assess the model of each axis independently, with or without feedforward 
actions. 

 

Fig. 4. Simple X translation test 
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 Other tests conducted for more complicated trajectories lead to the same results: 
simulated trajectories match the measured ones although very local gaps between simulation 
and measure exist. 
 As a conclusion of the assessment step, the simulated follow-up gives a good 
representation of the real one. Moreover, the precision of the simulations seems to be good 
enough to predict errors or deviations resulting from the level 2, and their impact onto the 
part geometry.  

4. APPLICATIONS TO MACHINED PARTS 

 This section aims at evaluating geometrical errors of the machined parts due to the 
trajectory follow-up during high-speed machining by simulation. For this purpose, the 
model presented above is used in the simulation of the machined part geometry. In parallel, 
the actual machining of the part is carried out on the machine tool Mikron UCP710. The 
actual geometry is measured using a confocal z-axis extended field sensor (STIL®) to be 
compared with the simulated one. Details of the procedure are given in Fig. 5. 
 The inputs of the axis follow-up model are the axis position set points calculated by 
the interpolator of the CNC. Simulated axis positions, resulting from the follow-up 
simulation as detailed in the previous section, are used to build the simulated tool trajectory 
by means of the direct kinematics transformation. From this virtual trajectory, the geometry 
of the part is simulated using a Nbuffer material removing model 0. Result of simulation is 
then compared to the actual part. 

 

 

Fig. 5. Simulation of the machining process 

 To bring out the influence of high velocities, two types of tool path are superposed. 
First, a reference is defined by the machining of the part with a low-programmed feedrate. 
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Deviations caused by follow-up can be neglected. Then, the same tool path is executed with 
a high velocity. 
 Different tests parts characteristic of moulds and dies machining are used (Fig. 8). The 
first one illustrates a case of point milling with both the X and Z axes. The second one 
corresponds to the flank milling of a sharp corner using the X and Y axes. The last case 
involves the 5 axes, with in particular the rotational axes A and C. 
 The first test-part consists of two planes connected in tangency by a portion  
of cylinder. The machining strategy is parallel planes in one way (XZ planes), with constant 
distance between planes of 0.25mm. The diameter of the ball-end mill tool is 10mm. The 
low programmed feedrate is set to 0.1m/min whereas the high feedrate is 10m/min. Only 
one path is executed with the high feedrate. Fig. 6 compares the measured geometry 
obtained after machining (left picture) with the simulated geometry obtained by virtual 
machining (right picture). Results focus on the connection zone. 
 A mark is clearly visible for the measured part as well as for the simulated one. The 
maximal depth is around 0.02mm for both cases. Considering that cutting conditions are 
consistent with the material (aluminium alloy) and the thickness used for finishing 
(0.05mm), the source of deviations is probably linked to the trajectory follow-up. 
 

 
Fig. 6. Results of the surface geometry for the first test part 

 The second test part represents the finishing by flank milling of a vertical corner with  
a cylindrical tool which diameter is 10mm. The reference is machined in one tool path with 
an axial depth of cut of 10mm and a low federate. Then the same tool path is translated  
of about 5mm along the Z axis, and is re executed with the high feedrate; the axial depth  
of cut is thus of 5mm. Fig. 7 compares the measured geometry to the simulated one. 
 Simulated and measured values are quite similar. With low feedrate, a little mark is 
visible (0.005mm). With high feedrate, maximal geometrical error on the surface is around 
0.03mm. As for the previous case, this example highlights that trajectory follow-up at high 
speed causes deviation, in particular when machining trajectory discontinuities. Remaining 
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differences between simulations and measures are supposed to be due to the real geometry 
of the machine tool, actual tool geometry and cutting. Nevertheless, it can also be brought 
out that the virtual machining is a good prediction of the actual machining. 

 

 

Fig. 7. Results of surface geometry for the second test part 

 
 

 

Fig. 8. Geometry of test parts n°1 and 2 

 For the last case, the trajectory is a 5-axis trajectory which involves the rotational axes 
with large displacements. For this example, we only consider geometrical errors on the part 
caused by the follow-up of rotational axes. 
 Although programmed feedrates are important, solicitations on the rotational axes are 
not sufficient to alter the trajectory follow-up and to generate large marks on the part. 
Deviations measured on axis during machining and simulated by the model are around 
0.001 degrees. This kinematical behaviour is due to low acceleration and jerk performances 
of the rotary and the tilting table of the HSM centre used for the experiments. 
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5. CONCLUSION 

 Within the context of HSM, it is generally difficult to separate the sources of errors 
linked to each stage of the machining process. Therefore, an interesting issue concerns the 
complete modeling of an industrial HSM machine so that each source of geometrical errors 
could be evaluated. Starting from previous work, a model of the trajectory execution 
performed by the NC unit is proposed. The interest of the simulation is to predict how large 
and where these deviations appear. In the paper, only the deviations due to the servo motion 
and the trajectory follow-up are considered. A simulation model is proposed to evaluate the 
importance of these deviations and is implemented in a structure of virtual machining 
allowing the prediction of the machined geometry. Through various cases, the importance  
of the follow-up deviation is investigated. If it can not be neglected when machining 
geometrical discontinuities in 3-axis milling, its importance is less in the case of 5 axes. 
Indeed, in such a case, as the rotational axes are less dynamic, the follow-up is less altered. 
Future work will focus on the integration of the virtual machining chain. 
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APPENDIX 

Implementation in Matlab Simulink of the dynamic model of feed drive for X axis. 
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