PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability of CSRS-PPP for validating the Egyptian geodetic CORS networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development, utilization, and maintenance of continuously operating reference stations (CORS) network are vital in many areas of surveying and geodesy, such as controlling geodetic networks, developing local ionospheric models, and estimating the tectonic plate movements. Accordingly, the Egyptian Surveying Authority (ESA) established a CORS network consisting of 40 stations covering the Nile valley and its delta in 2011. CORS collect global navigation satellite system (GNSS) data. Recently, Egypt has witnessed rapid growth in many infrastructure projects and the development of new cities on a national scale. Therefore, there is an urgent need to investigate the ESA-CORS accuracy; the quality of data from the ESA-CORS must be considered for monitoring continuous tectonic motion, coordinating changes, and for Egypt’s development plan. Contemporary research worldwide identified considerable benefits of the precise point positioning (PPP) solution of dual- or singlefrequency GNSS data. This study investigates the reliability of using the CSRS-PPP service for three consecutive observation days of 32 ESA-CORS networks in Egypt and the surrounding six international GNSS services (IGS)-CORS. For ESA-CORS, the PPP solution showed a root mean square error (RMSE) value of 6 mm (standard deviation [SD] = 3–4 mm) in east and north; for the height direction, the solution indicated an RMSE value of 22 mm (SD was about 14 mm). At a confidence level of 95%, this study revealed that SD95% was 2 mm in east and north directions and 6-7 mm for the height direction. This study shows that the PPP solution shown from the ESA-CORS stations is associated with two times better for horizontal and four times for the height direction than the delivered form ESA-CORS stations.
Słowa kluczowe
Rocznik
Strony
58--76
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Engineering, Aswan University, Aswan, Egypt
autor
  • Egyptian Surveying Authority, Giza, Egypt
Bibliografia
  • Abdallah A. (2015) The Effect of Convergence Time on the Static- PPP Solution. Proceedings of the 2nd International workshop on “Integration of Point- and Area-wise Geodetic Monitoring for Structures and Natural Objects. Institute of Engineering Geodesy, March, 27-29, Stuttgart, Germany.
  • Abdallah A. and Schwieger V. (2016) Static GNSS Precise Point Positioning using free online services for Africa. Survey Review, V. 48, No. 346, 61-77.
  • Ayhan, ME and Almuslmani, B. (2021) Positional accuracy and convergence time assessment of GPS precise point positioning in static mode, Arabian Journal of Geosciences, V. 14, No. 13, 1-12.
  • Bar-Sever, Y. E., Kroger, P. M., and Borjesson, J. A. (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. Journal of Geophysical Research: Solid Earth, V. 103, No. (B3), 5019-5035.
  • Boehm, J., Werl, B., and Schuh, H. (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of geophysical research: solid earth, V. 111, No. B2.
  • Böhm, J and Schuh, H. (2004) Vienna mapping functions in VLBI analyses. Geophysical research letters, V. 31, No. 1.
  • CSRS-PPP 2021, The Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP), viewed 14 February 2021,<https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php>.
  • Dach, R., Lutz S., Walser P., and Fridez P. (2015) Manual of Bernese GNSS Software Version 5.2, University of Bern, Switzerland.
  • El Manaily E., Abd Rabbou M., El-Shazly A., and Barakam M. (2017) Evaluation of quadconstellation GNSS precise point positioning in Egypt, Artificial Satellites, V. 52, No. 1, 9-18.
  • El Shouny A., & Miky Y. (2019) Accuracy assessment of relative and precise point positioning online GPS processing services, Applied Geodesy. V. 13, No. 3, 215-227.
  • ESA (Egyptian Survey Authority) (2012) The processing report of the Egyptian virtual reference stations, Internal technical report, 276 pp.
  • Hofmann-Wellenhof B., Lichtenegger H., and Wasle E. (2008) GNSS: Global Navigation Satellite Systems. 1st edn. Springer-Verlag Wien.
  • Hopfield, H. (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical research, V. 74, No. 18, 4487-4499.
  • Isioye, O. A., Moses, M., and Abdulmumin, L. (2019) Comparative study of some online GNSS post-processing services at selected permanent GNSS sites in Nigeria. Accuracy of GNSS methods, pp. 89-106.
  • ITRF (2020) International Terrestrial Reference Frame, .
  • Jamieson, M., & Gillins, D. T. (2018) Comparative analysis of online static GNSS postprocessing services. Journal of Surveying Engineering, V. 144, No. 4, 5018002.
  • Kedar, S., Hajj, G. A., Wilson, B. D., and Heflin, M. B. (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophysical research letters, V. 30, No. 16.
  • Kouba, J. (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. Journal of Geodesy, V. 83, No. 3, 199-208.
  • Le Provost, C., & Lyard, F. (1997) Energetics of the M2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model. Progress in Oceanography, V. 40, No. 1-4, 37-52.
  • Mikhail, E. (1976) Observations and Least Squares. New York: University Press of America.
  • Mirsa, P., & Enge, P. (2012) Global Positioing System Signals, Measurements, and Performance. Revised second ed. Lincoln: Ganga. Jamuna Press.
  • NGS (2021), (National Geodetic Survey), viewed 04 October 2021, <https://www.ngs.noaa.gov/ANTCAL/>
  • Rabah M., Elmewafy M., and Farhan M. (2016) Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning ‘‘PPP’’ technique, NRIAG Journal of Astronomy and Geophysics, V. 5, No. 1, 96-105.
  • Sakurai, T. (1985) Magnetic stellar winds-A 2-D generalization of the Weber-Davis model. Astronomy and Astrophysics, V. 152, 121-129.
  • Sanz J., Rovira-Garcia A., Hernández-Pajares M., Juan M., Ventura-Traveset J., LópezEchazarreta C., and Hein G. (2012) The ESA/UPC GNSS-Lab Tool (gLAB): an advanced educational and professional package for GNSS data processing and analysis, in 6th ESA Workshop on Satellite Navigation Technologies Multi-GNSS Navigation Technologies. Noordwijk, the Netherlands.
  • Snay, R. A., & Soler, T. (2008) Continuously operating reference station (CORS): history, applications, and future enhancements, Journal of Surveying Engineering, V. 134, No. 4, 95-104.
  • Walpersdorf, A., Bouin, M. N., Bock, O., and Doerflinger, E. (2007) Assessment of GPS data for meteorological applications over Africa: Study of error sources and analysis of positioning accuracy. Journal of atmospheric and solar-terrestrial physics, V. 69, N. 12, 1312-1330.
  • Zhou F., Dong D., Li W., Jiang X., Wickert J., and Schuh H. (2018) GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations, GPS Solutions, V. 22, No. 2, 33.
  • Zumberge J. F., Heftin M. B., Jefferson D., Watkins M. M., and Webb F. H. (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, V. 102, No. 10, 5005-5017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e97c3092-196c-4bf9-86c4-8fe803c1d942
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.