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1. Introduction 

The ultimate goal of every maintenance strategy in a modern 
plant is to avoid high maintenance costs and productions risks due 
to the rotating machine’s fault. High costs are initiated through the 
production stops and losses while the production risks are related 
to the  secondary failures of the neighboring machines. Monitoring 
the machine’s health through the implementation of condition based 
maintenance strategy is based on acquisition and trending the physi-
cal parameter that is found to be sensitive to machine degradation. 
Several methods of non-destructive testing are available nowadays, 
such as vibration measurement and analysis, infrared thermography, 
noise measurement, motor current signature analysis, wear particle 
analysis, ultrasound measurements etc. Mechanical vibration ac-
quired at the bearing’s housing (absolute vibration) or directly on a 
rotating part (relative vibration) is one of the best parameter for early 
detection of a developing fault inside a machine. If appropriate vibra-
tion transducer is engaged and mounted properly and if proper signal 
processing methods has been used for the suspected fault, then we can 
say that the vibration signal contains unambiguous information on the 
existing  state of the machine. Methods of vibration signature analysis 
enable the extraction of type and severity of a fault inside the rotating 

machine. However the existing guidelines are not universal due to the 
facts that there may be multiple faults inside the machine and that the 
content of the acquired vibration signals are dependent on the severity 
of the fault and on the variation of the rotating speed and load.  As a 
result, derivation of incorrect conclusions and wrong estimation of 
machine criticality in the plant, is a very common situation. We can 
avoid this by engagement of highly skilled certified vibration analysts 
or by the implementation of artificial intelligence (AI) techniques for 
reliable extraction of an existing fault. In the absence of certified vi-
bration analysts inside the maintenance team the implementation of 
AI methods through previously developed and validated fault identi-
fication algorithm has a promising potential. 

For the purpose of automatic machine health determination through 
automatic fault identification there are several applicable methods 
of AI such as supervised and unsupervised artificial neural networks 
(ANN), fuzzy logic, expert systems and hybrid intelligence systems. 
The most applied are ANN [14, 1] due to their ability to learn i.e. to 
adopt novelties. This adaptability of ANN results in a possibility for de-
tection of an existence of a new condition (fault) based on the existing 
data [13, 6]. In addition, ANN are found to be efficient in modeling of 
highly complex nonlinear phenomena that are present in several types 
of rotating machinery faults. Several types of ANN are successfully 
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Artykuł omawia zastosowanie sztucznych sieci neuronowych opartych na cechach oraz analizy drgań do celów automatycznej 
identyfikacji uszkodzeń łożysk tocznych. Cechy drgań mające posłużyć jako dane wejściowe do nadzorowanych sztucznych sieci 
neuronowych wybrano na podstawie analizy głównych składowych, która stanowi jedną z metod zmniejszania rozmiaru zbioru da-
nych statystycznych. Badania prowadzono na specjalnie do tego celu zaprojektowanym stanowisku badawczym oraz na układzie 
napędu żurawia portowego firmy Ganz w porcie Novi Sad w Serbii. Jako wejścia klasyfikatorów uszkodzeń wykorzystano różne 
skalarne cechy drgań określone w dziedzinie czasu i częstotliwości. Badano kilka typów uszkodzeń łożysk tocznych przy różnych 
poziomach obciążenia: uszkodzenia dyskretne w obrębie pierścienia wewnętrznego i zewnętrznego łożyska oraz nadmierny luz. 
Wykazano, że proponowany zbiór cech wejściowych umożliwia niezawodną identyfikację uszkodzeń łożysk tocznych oraz zapew-
nia lepszą wydajność zastosowanych sztucznych sieci neuronowych.

Słowa kluczowe: łożysko toczne, drgania, sztuczna sieć neuronowa, analiza głównych składowych.
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implemented in automatic fault identification [3, 7, 8, 12, 16, 17, 18, 
20]: back propagation feed forward network (BPFF), multiple layer 
perceptron network (MLP), back propagation multiple layer percep-
tron (BPMLP), radial basis function network (RBF), self-organized 
feature map (SOFM). An excellent review of different types of ANN 
and training algorithms implementation for different types of rotating 
machinery faults can be found in [10]. The increasing trend of imple-
mentation of MLP with back propagation training algorithm, with the 
number of neurons in hidden layers taken as a variable, is evident.

The success of ANN in identification and classification of ma-
chine fault is highly dependent on the definition of the cloud of input 
variables i.e. on the definition of the most representative vibration 
features that are sensitive on the fault occurrence and progression over 
the time. One vibration feature could be appropriate for one type of 
vibration fault while on the other hand it can be unresponsive for other 
type of fault. 

As a preprocessing tool for selecting the 
most important vibration features, we used 
principal component analysis (PCA). PCA is 
one of the most frequently used multivariate 
data analysis technique. One of the main goals 
of PCA implementation is the reduction of di-
mensionality of the input set of vibration fea-
tures. Basically it is defined as  an orthogonal 
linear transformation that transforms the cloud 
of input variables to a new coordinate system  in 
a way that the greatest variance of the input fea-
tures are aligned on the first coordinate (called 
the first principal component), the second greatest variance on the 
second coordinate, and so on. As a result, possibly correlated input 
features are converted  into a set of values of linearly uncorrelated 
variables that we call principal components. 

Roller element bearings are present in all types of rotating ma-
chines and often they are claimed to be the most critical parts of the 
machine and the main culprits of the machine failures. If we add to 
this the fact that roughly just 10% [11] of the bearings run for their 
complete design life then we can see that development of signal 
processing techniques and data preprocessing methods combined 
with the algorithms of ANN is prominent in maximizing the reliability 
of rotating machinery.

A successful implementation of ANN and PCA for the identifi-
cation of rotating machine faults can be found in [2, 15, 4, 9]. The 
authors used different scalar features obtained from vibration data as 
inputs for neuron classifiers.

In this paper, we used vibration scalar features obtained from fre-
quency and time domains. The initial definition of vibration features 
is done based on an assumption that these features are sensitive to 
bearing failures tested in this paper.

2. Vibration analysis techniques for roller element bear-
ings failures identification

Roller element bearing can prematurely fail due to different rea-
sons (Figure 1) and its failure can be initiated through different mech-
anisms such as: fatique crack, wear, plastic deformation of bearing 
components, corrosion, brinelling phenomena etc. Often, these mech-

anisms are overlapping inside the bearing. It is also possible that one 
mechanism activates the initial damage and that over the time another 
mechanism runs the bearing to the final failure [19, 16].

If we follow the best practices on proper lubrication, handling and 
installation of bearings then the most expected mechanism of bearing 
degradation is a material fatigue crack. In that case, roller element 
bearing which is subjected under the projected dynamic load will fail 
due to the occurrence of the fatigue crack. Due to the bearing ge-
ometry, the most expected place of initial crack occurrence is under 
the contact surface of internal race and the roller element. If such a 
bearing is left in operation under the load, the crack is expanding and  
occurs at the surface on the bearing race (Figure 2). The next stage 
of bearing degradation is the enlargement of the crack. At that stage 
other cracks might occur. Flaws from the race damage other compo-
nents of the bearing and we have a spalling inside a bearing. As a final 
result we have a bearing with excessive looseness. 

Ball bearing has four basic components: inner and outer race, 
roller elements and a cage. If we have a discrete crack on one of these 
components, then we have a chance to identify its characteristic forc-
ing frequency in time and frequency domain. Based on the geometry 
of the bearing we can calculate these frequencies: BPFI (ball pass 
frequency of inner race), BPFO (ball pass frequency of outer race), 
BS (ball pass frequency) and CF (cage frequency). 

The content of vibration signal from the bearing with a develop-
ing damage is highly dependent on the type and stage of degradation 
[19]. At the initial stage, we can see only minor impacts masked in 
noise. At later stages the crack develops and impacts are high enough 
to cause the bearing’s natural frequency (fres) excitement. Such a case, 
with the single crack on the inner race and with BPFI = 4.1X, where X 
stands for the first harmonic order (shaft speed), is numerically simu-
lated and shown on Figure 3. 

Time waveforms from Figure 3 reveal some interesting facts re-
garding vibration signals from faulty bearing. Signal is a sum of high 
amplitude and low frequency component from 1X and low amplitude 
and high frequency components from impacts that are generated every 
time when the ball hits the crack. Due to the presence of impulse ex-
citation, the system response is in the form of exponentially decayed 
harmonic component at the bearing’s natural frequency. The periodic-
ity of impacts corresponds to the characteristic fault frequency (BPFI 
in the present case) so in the frequency spectrum we can see sidebands 
at this fault frequency centered around bearing’s natural frequency. 
In cases when the fault rotates inside the bearing (fault on the inner 
ring or on the roller) we have an amplitude modulation of the fault 
frequency component. The carrier frequency is the fault frequency 

while the modulation frequency is the speed of the fault inside 
the bearing and is shown on Figure 3. The peak amplitudes of 
the impulses are not equal during a revolution of the shaft due to 
the fact that the fault (crack on the inner race in this case) comes 
in and goes out from the bearing load zone. BPFI component 
will be amplitude modulated with the 1X component. In case 
of a crack on a roller the BS component will be modulated with 
the CF since the cage holds the rollers and determines the speed 
of the rollers. In a case of a crack on the outer race, we do not 
expect amplitude modulation around the BPFO component. Fig. 1. Most common mechanisms for bearing failure [11]

Fig. 2. Development of crack on the internal race of the bearing
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As a fault develops, we can expect higher harmonics of bear-
ing fault frequencies, harmonics of the fundamental frequency and 
a broadband noise level increase due to the excessive looseness. Fre-
quency spectra from a bearing with an outer race damage located in 
the load zone and with an excessive looseness is shown on Figure 
4. Two harmonic families (1X and BPFO) as well as raised broad-
band noise is easy to see. Frequency spectra recorded on the test rig 
is shown on Figure 5.

Vibration signals from faulty bearings can be analysed using well-
known methods of signal processing in time, frequency and time – 
frequency domains. Analysis in time domain can be performed on raw 
and on filtered signals. Time domain analysis is usefull in later stages 
of bearing degradation since the impulses from discrete cracks and 
from excessive looseness are then visible. In addition, it is worth to 
mention that it is necessary to measure acceleration of vibration due 
to its high sensitivity to high frequency phenomena. Since faulty bear-
ings generate family of harmonics, which can be treated as periodicity 
in frequency domain, Cepstrum analysis can be used also. Dominant 
peaks in cepstrum can indicate the presence of 1X harmonics (loose-
ness in bearings) and amplitude modulations (inner race and roller 
fault). Analysis in frequency domain is mainly based on analysis of 
classic Fast Fourier Transform (FFT) and on analysis of acceleration 
envelope spectra. FFT is an effective tool in analysis of moderate and 
heavy damages in bearings while the envelope spectra is the most ef-
fective universal tool for identification of early faults in bearings. En-
velope spectra is calculated on band pass filtered time waveform com-

bined with the methods of signal demodulation. The aim of the band 
pass filtering is removal of high amplitude low frequency component 
and enhancement of the high frequency part of the spectra where natu-
ral frequency of the bearing amplitude modulated with the bearing 
fault frequency is located. As a result, we get the envelope spectra 
with the harmonics of the fault frequency. By measuring the relative 
height of these bearing fault frequencies from the carpet noise, we 
could quantify the bearing health state. However, in the later stage of 

the bearing degradation, we have an increase of the broadband 
noise, which remains in the resulted envelope spectra. In that 
case, the component of the bearing fault frequencies are masked 
in the noise and, despite the bearing’s state gets worser, we get 
a decrease in bearing fault frequencies relative height. For some 
bearing faults, we get the non-stationarity in vibration signal so 
methods of analysis, both in frequency and time domain can be 
used. Some of them are Short Time Fourier Transform (STFT) 
and wavelet analysis. 

For the purpose of vibration trending and implementation of 
ANN we have to define scalar vibration features that increase 
with damage development. Due to the impact phenomena, which 
is present in faulty bearings, acceleration parameters should be 
used. For later stages of bearing degradation, features based on 
vibration velocity can be used also. 

3. Experimental set up and results

The test rig, designed for the purpose of dataset collection, 
is shown on the Figure 5. The test rig consists of a 0.37 kW variable 
frequency drive connected over the flexible coupling to the shaft with 
two disks for unbalance introduction. Shaft is supported by two single 
row roller element bearings, type UC201A. The bearing fault frequen-
cies, in term of harmonic orders, are: BPFI = 4.9X, BPFO = 3.1X, BS 
= 2.1097X and CF = 0.3875X.  

Bearing vibrations were measured in radial directions, using in-
dustrial type IEPE accelerometers mounted at the roller element bear-
ing housings using mounting studs. Input shaft speed is measured 
using a non-contacting laser sensor and a reflective mark. Vibration 
and tacho signals were acquired simultaneously using multichannel 
vibration analyzers NetdB, OneproD MVX, dbFA and XPR software 
from 01db-Metravib. All the tests were performed at the 22Hz of in-
put speed. 

Before the test impact hammer was used to excite the bearing in 
order to record its natural frequency. Natural frequency was found at 
4.026 kHz. 

Fig. 4. Frequency spectra from a bearing with an excessive looseness and outer race 
fault. Harmonic cursor on BPFO family

Fig. 3. Bearing with inner race crack – time waveform generated by numerical simulation
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1Four levels of unbalance were introduced on both disks: 22.5 gmm, 
54 gmm, 136.5 gmm and 345 gmm, and we assigned them the following 
labels A, B, C and D, respectively. With every unbalance level, bearings 
with the following faults were tested: bearing in health condition (OK), 
small (I) and moderate (II) crack on the inner race, moderate crack on 
outer race with a crack located in the loading (OL) and unloaded (OU) 

1 Linear combination of peak and RMS values of acceleration

zone, moderate (Z1) and excessive (Z3) lossenes. This results in 
total of 28 states with label definition shown on Table 1.

Cracks on inner and outer race were introduced with small 
grinder tool. Smaller crack on the inner race is 0.1 mm deep 
while the moderate crack is 0.2 mm deep. The width of the 
cracks is 1 mm. The crack on the outer race is 1 mm wide and 
0.2 mm deep. Looseness has been introduced by adding a small 
amount of abrasive material (sand) in the grease and leaving 
such a bearing in operation (one hour for moderate and three 
hours for excessive looseness). After that, the contaminated 
grease has been replaced with a new one.

Despite the main goal of this research was a bearing fault 
identification we also introduced unbalance as a fault type. The 
main motivation behind this was the fact that in reality mul-
tiple faults are present on the machine and that reliable ANN 
should identify both unbalance level and the type and severity 
of the bearing fault. There are many rotating machines that can 
develop unbalance over time, such as fans or pumps with un-
balance growth (impeller in contact with abrasive fluids or dirt 

accumulated on impeller).
Vibration acquisition included the measurement of: raw time 

waveforms, narrow band FFT in different frequency ranges with 3200 
lines of resolution (2Hz-2kHz, 2Hz-5kHz, 2Hz-20kHz) and envelope 
spectra. Based on these measurements 17 scalar features were extract-
ed. Their labels and description are shown in Table 2. 

The definition of the vibration features has been guided by the 
type of the faults we are trying to identify. The unbalance presence 
and levels should be sensitive to the first harmonic of the vibration 

velocity [16]. Faulty bearings generate raised levels of 
accelerations in different frequency ranges based on ex-
act type of the bearing fault and on the severity of the 
fault. In case of discrete cracks on different bearing’s 
components higher vibration levels are generated at 
characteristic frequency of the bearing fault and on its 
harmonics. This is taken into account through amplitude 
extraction from the frequency spectra. First harmonics 
of the characteristic frequencies (BPFO, BPFI, BS, FT) 
and sums of their first four harmonics were defined. In 
case of looseness, high levels of acceleration peak val-
ues and harmonics of 1X component are generated. The 
number of harmonics are  dependent on the severity of 
the looseness. Therefore, peak to peak values and accel-
eration overall values in different frequency ranges were 
defined. Labels 1-9 in Table 2, correspond to the time 
domain while labels 10-17 are extracted from frequency 
spectra (frequency domain). 

For every combination of unbalance level and bear-
ing type (Table 1), 150 recordings were acquired. Vi-
brations were acquired with a periodicity of 3 minutes 
between them. This resulted in input matrix with 17 col-
umns (vibration features) and 4200 rows (data).

MLP ANN applied in this paper had a classification 
task – to detect an exact bearing defect type (Table 1). 
Several architectures of MLP ANN were tested by the 
means of choosing the optimal network architecture 
from the point of the number of neurons in the hidden 
layer, type of activation functions and type of the learn-

ing algorithm. For building, testing and training, Statistica Automatic 
Neural Networks package has been used. 2940 input vectors (70% of 
the dataset) were used for training while 1260 input vectors were used 
for cross verification and testing. The software automatically deter-
mined network complexity. 20 networks were tested. As a result the 
best performance network had 15 neurons in the hidden layer and the 
accuracy of classification of 85.714%. The confusion matrix for this 
ANN is  shown on table 3. 

Fig. 5. Test rig used for vibration acquisition on faulty bearings

Table 1. Test rig data: labels for different unbalance levels and bearing fault types

Bearing fault type

OK I II OL OU Z1 Z3

Unbalance 
levels

A AOK AI AII AOL AOU AZ1 AZ3

B BOK BI BII BOL BOU BZ1 BZ3

C COK CI CII COL COU CZ1 CZ3

D DOK DI DII DOL DOU DZ1 DZ3

Table 2. Test rig data: vibration features from the original dataset

Number Label Description Unit

1 RMS RMS of vibration velocity in range 2 Hz  -1 kHz mm/s

2 S1 Amplitude of the 1X vibration velocity component mm/s

3 SumS Sum of first seven harmonics of vibration velocity mm/s

4 Kurt Kurtosis parameter -

5 Acc2-300 RMS of acceleration in range 2 Hz – 300 Hz g

6 Acc2-2000 RMS of acceleration in range 2 Hz – 20 kHz g

7 Acc2-20000 RMS of acceleration in range 2 Hz – 20 kHz g

8 Def Defect factor1 -

9 TSS Peak-Peak value of acceleration raw time waveform g

10 BPFO Amplitude of the first harmonic of BPFO g

11 SumBPFO Sum of amplitudes of first four harmonics of BPFO g

12 BPFI Amplitude of the first harmonic of BPFI g

13 SumBPFI Sum of amplitudes of first four harmonics of BPFI g

14 BS Amplitude of the first harmonic of BS g

15 SumBS Sum of amplitudes of first four harmonics of BS g

16 FT Amplitude of the first harmonic of FT g

17 SumFT Sum of amplitudes of first four harmonics of FT g
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Table 3 reveals some interesting facts. The classification rate is 
either 100% or 0%. Some cases (BII, BZ3, CZ3 and DOL) are com-
pletely missed. Therefore, a PCA is conducted on the input dataset to 
define a dataset with reduced dimension in order to find MLP ANN 

with better performance. As a result of PCA, 7 principal 
components (PCs) have been extracted with the eigen-
values shown on table 4. 

If we choose the first four PCs with eigenvalues 
larger than one (criterion proposed by Kaiser in 1960) 
then we can say that using a 4 dimension PC input 
space we described the original input dataset with a 
total of 92.76% of variance. The most influential vi-
bration features for such a space are variables with the 
highest loadings i.e. highest projection on the coordi-
nate of these dominant PCs. Loadings for each variable 
for PC1 and PC2 are shown on Figure 6.

The importance of each feature, calculated through 
modeling power, is based on how well it is represented 
by the PC model. Features with high modeling power 
are relevant for the PC model while the variables with 
low modeling power can be discarded. 

Table 5. presents modeling power for each input 
feature and its importance. As relevant features, first 
9 were chosen and this defined the reduced set of in-
put features (Acc2-300, S1, Acc2-2000, SumBPFO, 
SumBPFI, SumS, RMS, FT and Acc2-20000). Using 
input matrix with these 9 vibration features several ar-
chitectures of MLP ANN were tested. As a result the 
best performance network had 13 neurons in the hidden 
layer and the accuracy of classification of 99.738%. The 
confusion matrix for this ANN is  shown on table 6. As 
it can be seen the classification success is much better. 
There are no completely missing faults as it was the case 
with the MLP ANN with complete dataset with 17 in-
put features. Only one case for AOU, BZ3, COU, DOL, 

DZ3 and six cases for CZ3 were incorrectly classified (Table 7).

4. Case study

PCA and MLP ANN for automatic identification of bearing faults 
were implemented on the Ganz port crane in port of Novi Sad, where 
an online system (Figure 7) for the crane surveillance based on strain, 
stress and vibration measurement has been installed [5]. 

During the operation of the online monitoring system, several 
faults were identified. One of them was the drive end (DE) bearing 
fault on the drive #1 for crane rotation. In March 2014, members of 
the port’s maintenance team reported the occurrence of raised tem-
peratures on the bearing housing and strange noise that is typical for 
bearings with an excessive looseness. A quick view on the frequency 
spectra and its comparison with the reference measurement shows the 
presence of raised carpet noise and higher vibration accelerations, 

Table 3. Test rig data: confussion matrix for best performance MLP ANN with 17 input features

 AI AII AOK AOL AOU AZ1 AZ3 BI BII BOK

Total 150 150 150 150 150 150 150 150 150 150

Correct 150 150 150 150 150 150 150 150 0 150

Incorrect 0 0 0 0 0 0 0 0 150 0

Correct (%) 100 100 100 100 100 100 100 100 0 100

Incorrect (%) 0 0 0 0 0 0 0 0 100 0

 BOL BOU BZ1 BZ3 CI CII COK COL COU CZ1

Total 150 150 150 150 150 150 150 150 150 150

Correct 150 150 150 0 150 150 150 150 150 150

Incorrect 0 0 0 150 0 0 0 0 0 0

Correct (%) 100 100 100 0 100 100 100 100 100 100

Incorrect (%) 0 0 0 100 0 0 0 0 0 0

 CZ3 DI DII DOK DOL DOU DZ1 DZ3 All cases

Total 150 150 150 150 150 150 150 150 4200

Correct 0 150 150 150 0 150 150 150 3600

Incorrect 150 0 0 0 150 0 0 0 600

Correct (%) 0 100 100 100 0 100 100 100 85.714

Incorrect (%) 100 0 0 0 100 0 0 0 14.286

Table 4. Test rig data: eignevalues, individual and cumulative variance for PCs

 Eigenvalues % Total variance Cumulative %

PC1 10.64789 62.63465 62.63465

PC2 2.27647 13.39103 76.02568

PC3 1.67373 9.84548 85.87116

PC4 1.17158 6.89164 92.76280

PC5 0.80524 4.73673 97.49954

PC6 0.28139 1.65523 99.15477

PC7 0.09024 0.53083 99.68559

Table 5. Test rig data: modeling power for each feature and its importance to 
PC model

Feature Power Impor-
tance Feature Power Impor-

tance

Acc2-300 0.994766 1 SumFT 0.959409 10

S1 0.985738 2 SumBS 0.946349 11

Acc2-2000 0.985107 3 BPFI 0.944689 12

SumBPFO 0.978242 4 TSS 0.911100 13

SumBPFI 0.974435 5 Def 0.899415 14

SumS 0.973051 6 BPFO 0.895808 15

RMS 0.968662 7 BS 0.821585 16

FT 0.963068 8 Kurt 0.606926 17

Acc2-20000 0.961326 9

Figure 6. Test rig data: Loadings for PC1 and PC2
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typical for bearings with looseness. The same applies to the time 
waveform (Figure 8), where the presence of short  duration high am-
plitude impacts can be seen. 

Vibration acquisition included measurement 
of raw time waveforms and narrow band FFT 
in different frequency ranges with 3200 lines of 
resolution. Vibration features that were extracted 
are presented in the table 8. 

Spectral extractions at bearing fault frequen-
cies were not defined since the exact geometry 
of the bearing was unkown. Vibration trends for 
RMS and Acc features, as examples, are shown 
on Figure 9. Vibration data are shown in terms of  
index and they cover the complete development 
of the bearing fault development. Two important 
facts are worth to mention when observing Fig-
ure 9. First, it can be seen that Acc parameter 
has an increasing trend with the fault develop-
ment while this can not be seen in case of RMS 
feature. Second, the machine under surveillance 
works under different loads and speeds. The data 
presented are not filtered to the specific load and 
speed levels. This is one of the reason for an ab-
sence of positive trend with RMS feature. 

When assigning output labels to the input 
vectors a constant rate of bearing fault develop-
ment is assumed.  The original dataset consists 
of 1100 individual vectors and covers the data 
before the high temperatures occurrence up 
to the date when the machine was stopped for 
bearing replacement. The output labels are: Z1 
(healthy bearing), Z2 (moderate looseness) and 
Z3 (excessive looseness). Using input matrix 

with 9 features and 1100 labeled vectors several architectures 
of MLP ANN were tested. The best performance network had 
13 neurons in the hidden layer and the accuracy of classification 
of 87.091%. 

PCA on the input dataset resulted in extraction of 3 PCs with 
eigenvalues (Table 10). First two PCs have eigenvalues larger 
than 1 and projecting input features on these two PCs we are 
describing the input features dataset with 79.06% of variance. 

The importance of each feature is evaluated through mod-
eling power and the results are shown on Table 11. Kurtosis 
parameters and RMS of vibration velocity were excluded from 
the input feature matrix for MLP ANN. Using six input features 
several MLP ANN were tested. The best performance network 

had 11 neurons in the hidden layer and the accuracy of classification 
of 92.337%. As in the case of the test rig data, the input dataset with 
the reduced set of input features resulted in the MLP ANN with better 
classification rate (Table 12).

Table 6. Test rig data: confussion matrix for best performance MLP ANN with 9 input features

AI AII AOK AOL AOU AZ1 AZ3 BI BII BOK

Total 150 150 150 150 150 150 150 150 150 150

Correct 150 150 150 150 149 150 150 150 150 150

Incorrect 0 0 0 0 1 0 0 0 0 0

Correct (%) 100 100 100 100 99.333 100 100 100 100 100

Incorrect (%) 0 0 0 0 0.667 0 0 0 0 0

 BOL BOU BZ1 BZ3 CI CII COK COL COU CZ1

Total 150 150 150 150 150 150 150 150 150 150

Correct 150 150 150 149 150 150 150 150 149 150

Incorrect 0 0 0 1 0 0 0 0 1 0

Correct (%) 100 100 100 99.333 100 100 100 100 99.333 100

Incorrect (%) 0 0 0 0.667 0 0 0 0 0.667 0

 CZ3 DI DII DOK DOL DOU DZ1 DZ3 All cases

Total 150 150 150 150 150 150 150 150 4200

Correct 144 150 150 150 149 150 150 149 4189

Incorrect 6 0 0 0 1 0 0 1 11

Correct (%) 96 100 100 100 99.333 100 100 99.333 99.738

Incorrect (%) 4 0 0 0 0.667 0 0 0.667 0.262

Table 7. Test rig data: prediction errors for best performance MLP ANN with 9 
input features

Phase Target – input Prediction - 
output

Number of oc-
currence

Training AOU AOL 1

Validation BZ3 CZ3 1

Training COU DOL 1

Training CZ3 DZ3 3

Testing CZ3 DZ3 1

Validation CZ3 DZ3 2

Training DOL COL 1

Training DZ3 CZ3 1

Fig. 7. Scheme of the online monitoring system installed on Ganz port crane [5] 

Fig. 8. Motor DE bearing: time waveforms for bearing in good and faulty 
state 
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5. Conclusion

Implementation of ANN techniques in predictive maintenance of 
rotating machines based on vibration measurement and analysis can 
help in solving complex problems especially in presence of lack of 
highly skilled vibration analysts. However, for the reliable ANN an 
optimal set of vibration features must be defined. In this paper we 
demonstrated PCA as one of the possible technique for input features 

Fig. 9. Case study data: vibration trends for Acc and RMS features 

Table 8. Case study data: vibration features from the original dataset

Number Label Description Unit

1 RMS RMS of vibration velocity in range 2 Hz  -1 kHz mm/s

2 Acc RMS of acceleration in range 2 Hz – 2 kHz g

3 Acc_2_500 RMS of acceleration in range 2 Hz – 500 Hz g

4 Acc_500_1000 RMS of acceleration in range 500 Hz – 1 kHz g

5 Acc_1000_2000 RMS of acceleration in range 1 kHz – 2 kHz g

6 PeakPeak Peak-Peak value of acceleration raw time waveform g

7 Def Defect factor g

8 Kurtosis MVX Kurtosis parameter of the raw time waveform -

9 Kurtosis Postprocess Kurtosis parameter of the high pass filtered (500 Hz – 2kHz) time waveform -

Table 9. Case study data: confussion matrix for best performance MLP ANN 
with 9 input features

Z1 Z2 Z3 All cases

Total 699 238 163 1100

Correct 689 116 153 958

Incorrect 10 122 10 142

Correct (%) 98.5694 48.7395 93.8650 87.091

Incorrect (%) 1.4306 51.2605 6.1350 12.909

Table 10. Case study data: eignevalues, individual and cumulative variance for 
PCs

Eigenvalues % Total variance Cumulative %

PC1 5.440144 60.44605 60.44605

PC2 1.675361 18.61512 79.06117

PC3 0.828145 9.20161 88.26278

Table 11. Case study data: modeling power for each feature and its impor-
tance to PC model

 Feature Power Importance

Acc 2 0.961748 1

PeakPeak 6 0.955579 2

Acc_500_1000 4 0.950476 3

Acc_1000_2000 5 0.939676 4

Acc_2_500 3 0.924648 5

Def 8 0.779565 6

Kurtosis MVX 9 0.672782 7

Kurtosis Postprocess 7 0.642616 8

RMS 1 0.288415 9

Table 12. Case study data: confussion matrix for best performance MLP ANN 
with 6 input features

Z1 Z2 Z3 All cases

Total 495 168 107 770

Correct 478 132 101 711

Incorrect 17 36 6 59

Correct (%) 96.5657 78.5714 94.3925 92.3377

Incorrect (%) 3.4343 21.4286 5.6075 7.6623
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space dimension reduction and optimal selection of input features 
based on vibration measurement. 

In case of bearing faults combined with four levels of imbalance 
introduced on test rig, vibration features based on overall acceleration 
and vibration velocity as well as spectral extractions at bearing fault 
frequencies were the best choice of input features. The ANN with bet-
ter performance is generated and classification rate is raised by 14%. 
In case of real life application on the port crane, the classification rate 
is raised by 5% through exclusion of overall vibration velocity and 
kurtosis parameters. In later case, RMS value of vibration velocity is 
irrelevant as an input feature, since all bearing fault cases correspond 

to the same level of imbalance. However in both cases kurtosis pa-
rameters are irrelevant. This is an interesting conclusion since it is 
believed that kurtosis parameter is the preferred vibration feature for 
bearing fault identification in the presence of variable load and speed 
of the machine.
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