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Abstract 

Vibrations of Timoshenko beams with properties periodically varying along the axis are under consideration. 
The tolerance method of averaging differential operators with highly oscillating coefficients is applied to 

obtain the governing equations with constant coefficients. The dynamics of Timoshenko beam with the effect 

of the cell length is described. A asymptotic model is then constructed, which is further studied in analysis of 
the low order natural frequencies. The proposed model is able to describe dynamics of beams made of non-

slender cells. 
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1. Introduction 

The analysis will be restricted to the linear free vibrations of elastic shear-deformable 

beam with rotational inertia. Considered structure consists of many small, identical and 

ordered pieces of length l, called periodicity cells. The geometric and material properties 

are varying periodically along longitudinal axis of the beam. A fragment of such beam is 

shown in Figure 1. 

 

Figure 1. A fragment of periodically inhomogeneous Timoshenko beam 

The direct analytical formulation of considered Timoshenko beam model leads to 

equations of motion which usually do have non-continuous, highly oscillating, periodic 

coefficients. Many methods have been developed in analysis of periodically 

inhomogeneous solids and structures. The most advanced are the analytical methods 

based on asymptotic homogenization of differential operators [1-2]. 

Here, the tolerance averaging technique [9-10] is applied in order to replace the 

differential equations with highly oscillating coefficients by equations with constant 

coefficients. The presented method enables continuous analysis of an equivalent 
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homogeneous medium with effective properties. The model reduces the computational 

cost and disposes of numerical difficulties. The approach used here has been applied in 

analysis of many thermo-mechanical problems of periodic and almost-periodic solids 

and structures. To name only few, tolerance models of beams with periodically variable 

parameters are considered in [3, 8]. In [6] some aspects of modelling of dynamic 

problems of thin functionally graded plates with a special tolerance–periodic 

microstructure in planes parallel to the plate midplane are considered. 

Detailed analytical solution of homogeneous Timoshenko beam is considered in [6]. 

A numerical example is shown for a non-slender beam to signify the differences among 

the Timoshenko, Bernoulli, shear and Rayleigh beam models.  

2. Formulation of the problem 

The strain-displacement relations in Timoshenko beam theory are assumed as 

θ,wγθ,κ -¶=¶=  (1) 

where w, θ, κ and γ represent the deflection, the cross-section rotation, the bending 

curvature, and the shear strain, respectively. The strain energy U and the kinetic energy 

K for a Timoshenko beam can be written as 
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where r, A, J, E, G and k are the mass density per unit volume, cross-section area of the 

beam, the area moment of the inertia, Young’s modulus and shear modification 

coefficient, respectively. The equations of motion may be derived from Hamiltons 

principle (3). 
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3. Introductory concepts, fundamental assumptions 

The domain occupied by the beam is given by one-dimensional Λ = (0,L), where L is the 

beam length. It is assumed that the cell length is much smaller than the beam length, 

l<<L. Following the book edited by Woźniak cf. [9], some introductory concepts of the 

tolerance modelling are used, i.e. the averaging operator, tolerance system, slowly-

varying function SVα
ξ (Λ,Δ), tolerance-periodic function TPα

ξ (Λ,Δ), highly oscillating 

function HOα
ξ (Λ,Δ), fluctuation shape function FSα

ξ (Λ,Δ), where ξ is the tolerance 

parameter and α is a positive constant determining kind of the function. The basic 

concept of the modelling technique is the averaging operator, for an integrable function f 

defined by: 
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The unknown deflection w, and rotation θ are decomposed into their averaged and 

fluctuating part: 
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The new basic kinematic unknowns W(x,t) and Θ(x,t) are called the transverse 

macro-displacement and the macro-rotation; VA(x,t), ZR(x,t) are additional kinematic 

unknowns, called the fluctuation amplitudes. The unknown functions are assumed to be 

slowly-varying (SV) together with their first derivatives. The highly oscillating 

fluctuation shape functions (FSFs) hA and pR are assumed a priori in every problem 

under consideration in order to describe the unknown fields oscillations caused by the 

structure inhomogeneity. Apart from the restriction of l-periodicity, the FSFs have to 

satisfy the following conditions: 

.00 == KA ρJp,ρAh  (6) 

4. The tolerance model of a Timoshenko beam 

The Lagrange function for considered problem is given as follows: 

( )[ ].θθρJwwρAθθwθwwkGAθθEJKUL &&&& --+¶-¶¶+¶¶=-= 2
2

1  (7) 

As the basic modelling assumption micro-macro decompositions (5) of the unknown 

deflection w, longitudinal displacement u0 and shear angle θ are introduced into 

Lagrangian. Applying averaging operator (4) and the tolerance averaging 

approximations, the tolerance averaged form L  of Lagrangian (7) is obtained in the 

form: 
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Subsequently, variation of above Lagrangian leads to four equations of motion with 

constant coefficients. 
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The underlined terms depend on the microstructure size. 

5. Asymptotic model equations 

Neglecting the terms dependent on the cell length l, we obtain the system of equations of 

the asymptotic model. It describes the behaviour of Timoshenko beam only in the 

macroscale: 
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Equations (10) 2 and (10) 4  can be rewritten as 
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We can further define the effective shear stiffness Heff and effective bending stiffness Deff 

which are constant: 
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Combining equations (10-12), we obtain the following system of differential 

equations which represents the asymptotic model of considered Timoshenko beam: 
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It can be noted that the above equations have the same form as the equations for a 

homogeneous beam, cf. [4]. 

6. Asymptotic model solution 

We assume that functions W, Θ share the same time solution T(t): 
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After substitution of (14), equations (13) can be rewritten in matrix form: 
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These equations can be decoupled to yield 
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The differential equations for W(x) and Θ(x) have the same form, so that it is 

assumed that he solutions also have the same form and differ by a constant as 
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The characteristic equation is given by 
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therefore the eigenfrequencies can be expressed as: 
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i = 1, 2, 3, 4, and from the following equation: 
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the corresponding eigenvectors u are obtained: 
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The spatial solutions are given by 
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Spatial solution (22) can be also written in terms of the sinusoidal and hyperbolic 

functions with real arguments: 

( )
( ) ,coshsinhcossin
Θ 4

4

3

3

2

2

1

1
bx

D

C
bx

D

C
ax

D

C
ax

D

C

x

xW
ú
û

ù
ê
ë

é
+ú

û

ù
ê
ë

é
+ú

û

ù
ê
ë

é
+ú

û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
 (24) 

and only four from the constants C1-C4 and D1-D4 are independent, cf. [4]. 

Substituting (24) into the boundary conditions for W and Θ, we obtain a system of 

linear homogeneous equations for the suitable constants C and D. Then, the frequency 

equation is derived from the condition that the determinant of coefficients matrix has 

to vanish. 

7. Application 

In this section, analysis of influence of geometrical parameters in a cell on the first 

natural frequency of hinged-hinged beam with periodically varying cross-section, cf. 

Figure 1, is performed. The boundary conditions for considered beam are: 

.0for0a0Θ L,xWnd ===¶  (25) 

The frequencies were obtained in the framework of the proposed model and 

compared with the results from a finite element model (30 elements, 60 degrees of 

freedom) with Hermite polynomials as shape functions.  

The fluctuation shape functions defining the fluctuating parts of unknown 

displacements were assumed in the form of trigonometric series: 
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to ensure non-zero correctors in calculating the effective shear and bending 

stiffness (12). The conditions (6) are satisfied for considered symmetric unit cell. The 

number of functions (26) has been selected by the analysis of the effective stiffness 

convergence, and the satisfactory results were obtained for N = M =10. 

The beam length is L = 1 m, shear factor k = 5/6, the mass density of the material 

ρ = 7860 kg/m3, Young modulus E = 210 GPa. The cross-section is rectangular, 

piecewise constant. The saturation parameter α changes in range 0.1-0.9, section width is 

b1 = b2 = 20 mm, section height is h1 = 20 mm, h2 = a h1 = {0.95,0.9,0.85,0.8,0.75} h1. 

The number of the cells is 10, h1 / l =1/5, hence the cell can be considered as moderately 

thick. Dependence of the first natural frequency ω for asymptotic model (lines) and finite 

element model (dots) is depicted in Figure 2, and the relative difference between these 

models, versus parameter α is shown in Figure 3. As it can be seen from the Figure 3, the 

results differ no more than 0.5% in the considered cases. 
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Figure 2. First natural frequency for various values of cross section height, dots - finite 

element model, lines – asymptotic model; a=h2/h1 

 

Figure 3. Relative difference between asymptotic and fem results 
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8. Conclusions 

The natural vibration analysis of a periodic beam has been performed in the framework 

of tolerance modelling technique. The Timoshenko beam theory, including first order 

kinematic correction for shear strain, have been applied in order to analyse beams 

consisting of non-slender repetitive cells. The obtained system of differential equations 

with constant coefficients and additional degrees of freedom makes it possible to 

describe the dynamics of the beam in the macro-scale. The coefficients of these 

equations depend on so-called fluctuation shape functions which describe the vibrations 

of a periodicity cell. 

A simplified version of the proposed model has been applied in analysis of first 

natural frequency of a variable cross-section beam. From the obtained results it can be 

concluded that application of approximate fluctuation shape functions leads to 

satisfactory results. 

Acknowledgement 

The authors are grateful for the support provided by the National Science Centre, Poland 

(Grant No. 2014/15/B/ST8/03155). 

References 

1. N. S. Bakhvalov, G. P. Panasenko, Averaging of processes in periodic media, 

Nauka, Moskwa 1984. 

2. A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for periodic 

structures, North-Holland, Amsterdam 1978. 

3. Ł. Domagalski, J. Jędrysiak, Geometrically nonlinear vibrations of slender meso-

periodic beams. The tolerance modelling approach, Comp. Struct., 136 (2016) 

270 – 277. 

4. S. M. Han, H. Benaroya, T. Wei, Dynamics of transversely vibrating beams using 

four engineering theories, Journal of Sound and Vibration, 225(5) (1999)  

935 – 988. 

5. W. M. He, W. Q. Chen, H. Qiao, Frequency estimate and adjustment of 

 composite beams with small periodicity, Composites: Part B,  45 (2013) 742 – 747. 

6. J. Jędrysiak, Modelling of dynamic behaviour of microstructured thin functionally 

graded plates, Thin-Walled Structures, 71 (2013) 102 – 107. 

7.  V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators 

and integral functionals, Springer Verlag, Berlin-Heidelberg-New York 1994. 

8. K. Mazur-Śniady, Macro-dynamics of micro-periodic elastic beams, J. Theor. Appl. 

Mech., 31 (1993) 34 – 46. 

9. C. Wozniak et al (eds.), Mathematical modelling and analysis in continuum 

mechanics of microstructured media, Silesian University of Technology Press, 

Gliwice 2010. 

10. Cz. Woźniak, E. Wierzbicki, Averaging techniques in thermomechanics of 

composite solids, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2000. 

 


