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Abstract

Vibrations of Timoshenko beams with properties periodically varying along the axis are under consideration.
The tolerance method of averaging differential operators with highly oscillating coefficients is applied to
obtain the governing equations with constant coefficients. The dynamics of Timoshenko beam with the effect
of the cell length is described. A asymptotic model is then constructed, which is further studied in analysis of
the low order natural frequencies. The proposed model is able to describe dynamics of beams made of non-
slender cells.
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1. Introduction

The analysis will be restricted to the linear free vibrations of elastic shear-deformable
beam with rotational inertia. Considered structure consists of many small, identical and
ordered pieces of length /, called periodicity cells. The geometric and material properties
are varying periodically along longitudinal axis of the beam. A fragment of such beam is
shown in Figure 1.

Figure 1. A fragment of periodically inhomogeneous Timoshenko beam

The direct analytical formulation of considered Timoshenko beam model leads to
equations of motion which usually do have non-continuous, highly oscillating, periodic
coefficients. Many methods have been developed in analysis of periodically
inhomogeneous solids and structures. The most advanced are the analytical methods
based on asymptotic homogenization of differential operators [1-2].

Here, the tolerance averaging technique [9-10] is applied in order to replace the
differential equations with highly oscillating coefficients by equations with constant
coefficients. The presented method enables continuous analysis of an equivalent
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homogeneous medium with effective properties. The model reduces the computational
cost and disposes of numerical difficulties. The approach used here has been applied in
analysis of many thermo-mechanical problems of periodic and almost-periodic solids
and structures. To name only few, tolerance models of beams with periodically variable
parameters are considered in [3, 8]. In [6] some aspects of modelling of dynamic
problems of thin functionally graded plates with a special tolerance—periodic
microstructure in planes parallel to the plate midplane are considered.

Detailed analytical solution of homogeneous Timoshenko beam is considered in [6].
A numerical example is shown for a non-slender beam to signify the differences among
the Timoshenko, Bernoulli, shear and Rayleigh beam models.

2. Formulation of the problem

The strain-displacement relations in Timoshenko beam theory are assumed as
k=00, y=0w—0, (1)
where w, 0, k and y represent the deflection, the cross-section rotation, the bending

curvature, and the shear strain, respectively. The strain energy U and the kinetic energy
K for a Timoshenko beam can be written as

U= lT(Esz + kGAyz)dx K= lj:pszdx + lj.pJezdx )
29 , 25 2% ’

where p, 4, J, E, G and k are the mass density per unit volume, cross-section area of the

beam, the area moment of the inertia, Young’s modulus and shear modification

coefficient, respectively. The equations of motion may be derived from Hamiltons

principle (3).

o[ (U -K)dt =0 3)

3. Introductory concepts, fundamental assumptions

The domain occupied by the beam is given by one-dimensional A = (0,L), where L is the
beam length. It is assumed that the cell length is much smaller than the beam length,
[<<L. Following the book edited by Wozniak cf. [9], some introductory concepts of the
tolerance modelling are used, i.e. the averaging operator, tolerance system, slowly-
varying function SV% (A,A), tolerance-periodic function 7P% (A,A), highly oscillating
function HO% (A,A), fluctuation shape function FS% (A,A), where & is the tolerance
parameter and o is a positive constant determining kind of the function. The basic
concept of the modelling technique is the averaging operator, for an integrable function f
defined by:

)= {{(xﬁx- )

The unknown deflection w, and rotation 6 are decomposed into their averaged and
fluctuating part:
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wix,t)=w(x,0)+ k(x4 (x,2), 4=1,...,N,
0(x,2)=0(x,2)+ p®(x)2" (x,t), R=1,....M, (%)
weLvACLe() 2 ()esvy(aa) ni() p()e Fsy(a.A),

The new basic kinematic unknowns W(x,f) and ©O(x,f) are called the transverse
macro-displacement and the macro-rotation; V4(x,f), Z%(x,7) are additional kinematic
unknowns, called the fluctuation amplitudes. The unknown functions are assumed to be
slowly-varying (SV) together with their first derivatives. The highly oscillating
fluctuation shape functions (FSFs) A% and p® are assumed a priori in every problem
under consideration in order to describe the unknown fields oscillations caused by the

structure inhomogeneity. Apart from the restriction of /-periodicity, the FSF's have to
satisfy the following conditions:

<pAhA > =0, <pJpK> =0. (6)

4. The tolerance model of a Timoshenko beam

The Lagrange function for considered problem is given as follows:
L=U-K= %[EJ&@@H + kGA(Owow — 20w0 + 00) — p A — pJo0d (7)
As the basic modelling assumption micro-macro decompositions (5) of the unknown
deflection w, longitudinal displacement uy and shear angle 0 are introduced into

Lagrangian. Applying averaging operator (4) and the tolerance averaging
approximations, the tolerance averaged form <£> of Lagrangian (7) is obtained in the

form:
(L)= %[<EJ>8@6@ +2(EJop" 002" + (EJop"ap® |2"2° + (kGA owow +
+2(kGAoh" oWV + (kGAdh"oh® W VP ~2(kGA)OWE ~2(kGAp™ oW Z" +
~2(kGAoh" \oV * +-2(kGAoh" p" V12" + (kGA)0O + 2(kGap " |OZ" + ®)
+ <kGApRpS>ZRZS - <pA>WW+—2<pAhA >WVA - <pAhAhA >VAVB +
- <pJ>@@—z<pJpR>@zR - <pJpR pS>ZRZS

Subsequently, variation of above Lagrangian leads to four equations of motion with
constant coefficients.

(kGA) o2 —20)+ (kGAG" \ov ~ (kGap™ 2" ~ (pA Y ~ (pan” 1 <o,

<kGA6hA >(aW—®)+ <kGA8hA8hB>VB - <kGA8hApR >ZR + <pAhA yt/ + 9)

+<pAhAhB>VB =0,
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(EJ)0*0 + (EJop" 02" + (kGA (oW - ©)+ (kGAdh™ 7 ~ (kGAp" 12" +
o~ " 2 =0,
<EJ6pR >a® + <EJapRapS >ZS - <kGApR >(6W ~0)- M >VA + ©)

+ <kGApRpS >ZS + <pJpR >® + <pJpRpS>ZS =0.

The underlined terms depend on the microstructure size.

5. Asymptotic model equations

Neglecting the terms dependent on the cell length /, we obtain the system of equations of
the asymptotic model. It describes the behaviour of Timoshenko beam only in the
macroscale:

(kGA (00w —20)+ (kGAdh™ oV —(pAW =0,

<kGA6hA>(8W—®)+ <kGA8hAahB>VB =0,

(10)
(EJ)000 + <EJ8pR }92’? +(kGA)oW - ©)+ <kGA6hA >VA ~(pJ ) =0,
<EJ6pR >a® + <EJ6pR6pS >ZS =0.
Equations (10)>and (10) 4 can be rewritten as
yA = —7<kGA6hA> (ow-e), z* = —7<EJ8pR> 00. (11)
<kGA onon® > ’ <EJ6pR8pS >

We can further define the effective shear stiffness H* and effective bending stiffness D¢
which are constant:

<kGA6hA ><kGA6hB> e <EJ6pR ><EJ6pS> o7 "

<kGA6hA8hB> <EJ6pR6pS>
Combining equations (10-12), we obtain the following system of differential
equations which represents the asymptotic model of considered Timoshenko beam:

HY (00w -00)- (pAW =0,
D600+ HY (oW -©)—(pJ)® =0.

It can be noted that the above equations have the same form as the equations for a
homogeneous beam, cf. [4].

<kGA > -

(13)

6. Asymptotic model solution

We assume that functions W, @ share the same time solution 7(7):

L

®(x, t)
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After substitution of (14), equations (13) can be rewritten in matrix form:

HY o |oeow 0 -HY |ow
0: —+ +
0 DY |e@| |HY 0 00

15
NEGZICY 0 w >
0 -HY +jpJ)’ | 0]
These equations can be decoupled to yield
P4) L 7)) 2000 P - 07) 2] 20
6668®+(M+D6ﬁ. ) 88®—Deﬁ. 1—H€ﬁ. o [0 ®@=0,
(16)

p4) p7)] > P P) o) o
8666W+[Heﬁ,+D(_ﬁ, waﬁW—Deﬂ 1+Heﬁ,(n oW =0.

The differential equations for W(x) and ®(x) have the same form, so that it is
assumed that he solutions also have the same form and differ by a constant as

{W(x)} = due’™. (17)

©(x)
The characteristic equation is given by

r4+(<PA>+<PJ>szrz_<pA>(l <PJ>0)2] 2o

" i | g ® |7
therefore the eigenfrequencies can be expressed as:
2
_e | [ PA) e oy () )Y e, P ) o)
n_i\_(Heﬁ'Jrl)eﬂm i\ H7+D7f/ o +D€ﬁ. I_He/f 0, (19)

i=1,2,3,4, and from the following equation:

) (18)

HY 2 +<pA>(x)2 ~HY 0 20)

. . u = ,

HY r DYy —HY r+(pJ o’ (
the corresponding eigenvectors u are obtained:

HY DYy —HY r+ pJ )’

u; = ef .2 2 lub g V <p >(0 - (21)
HY r +<pA>0) ~HY
The spatial solutions are given by
Wm (x) _ d d X _ d bx d —bx d iax d —iax

6 (x) = Z] e =duwe” +dyuse T +diuse™ +duge T, (22)

where

. (<pA> ) ] . J[ (o) () J (o) [1_ () J .

Ha  pdr g p DY yac
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. [ b4 M}ﬂz +\[ o) | <pJ>J2m4 L p4) (1_ ) mz}nz @

o pdr oy pdr D HY

Spatial solution (22) can be also written in terms of the sinusoidal and hyperbolic
functions with real arguments:

W(x) G . G, G| . Gy
= sinax + cos ax + sinh bx + cosh bx, (24)
ox)| | D D, D, D,

and only four from the constants C;-Cs and D;-Dy are independent, cf. [4].

Substituting (24) into the boundary conditions for 7 and ®, we obtain a system of
linear homogeneous equations for the suitable constants C and D. Then, the frequency
equation is derived from the condition that the determinant of coefficients matrix has
to vanish.

7. Application

In this section, analysis of influence of geometrical parameters in a cell on the first
natural frequency of hinged-hinged beam with periodically varying cross-section, cf.
Figure 1, is performed. The boundary conditions for considered beam are:
0®0=0 and W=0 for x=0,L. (25)

The frequencies were obtained in the framework of the proposed model and
compared with the results from a finite element model (30 elements, 60 degrees of
freedom) with Hermite polynomials as shape functions.

The fluctuation shape functions defining the fluctuating parts of unknown
displacements were assumed in the form of trigonometric series:

n(y)=1Isin 2Alny ., pR(y)=1Isin ZRZTW , (26)

to ensure non-zero correctors in calculating the effective shear and bending
stiffness (12). The conditions (6) are satisfied for considered symmetric unit cell. The
number of functions (26) has been selected by the analysis of the effective stiffness
convergence, and the satisfactory results were obtained for N = M =10.

The beam length is L =1 m, shear factor k= 5/6, the mass density of the material
p=7860 kg/m®, Young modulus E =210 GPa. The cross-section is rectangular,
piecewise constant. The saturation parameter o changes in range 0.1-0.9, section width is
by = by =20 mm, section height is #; =20 mm, A, = a h = {0.95,0.9,0.85,0.8,0.75} h;.
The number of the cells is 10, 4 / [ =1/5, hence the cell can be considered as moderately
thick. Dependence of the first natural frequency ® for asymptotic model (lines) and finite
element model (dots) is depicted in Figure 2, and the relative difference between these
models, versus parameter o is shown in Figure 3. As it can be seen from the Figure 3, the
results differ no more than 0.5% in the considered cases.
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Figure 2. First natural frequency for various values of cross section height, dots - finite
element model, lines — asymptotic model; a=h»/h;
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Figure 3. Relative difference between asymptotic and fem results
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8. Conclusions

The natural vibration analysis of a periodic beam has been performed in the framework
of tolerance modelling technique. The Timoshenko beam theory, including first order
kinematic correction for shear strain, have been applied in order to analyse beams
consisting of non-slender repetitive cells. The obtained system of differential equations
with constant coefficients and additional degrees of freedom makes it possible to
describe the dynamics of the beam in the macro-scale. The coefficients of these
equations depend on so-called fluctuation shape functions which describe the vibrations
of a periodicity cell.

A simplified version of the proposed model has been applied in analysis of first
natural frequency of a variable cross-section beam. From the obtained results it can be
concluded that application of approximate fluctuation shape functions leads to
satisfactory results.
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