PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Study of Silent Sonar

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stealth is a frequent requirement in military applications and involves the use of devices whose signals are difficult to intercept or identify by the enemy. The silent sonar concept was studied and developed at the Department of Marine Electronic Systems of the Gdansk University of Technology. The work included a detailed theoretical analysis, computer simulations and some experimental research. The results of the theoretical analysis and computer simulation suggested that target detection and positioning accuracy deteriorate as the speed of the target increases, a consequence of the Doppler effect. As a result, more research and measurements had to be conducted to verify the initial findings. To ensure that the results can be compared with those from the experimental silent sonar model, the target’s actual position and speed had to be precisely controlled. The article presents the measurement results of a silent sonar model looking at its detection, range resolution and problems of incorrect positioning of moving targets as a consequence of the Doppler effect. The results were compared with those from the theoretical studies and computer simulations.
Rocznik
Strony
103--115
Opis fizyczny
Bibliogr. 25 poz., fot., tab., wykr.
Twórcy
autor
  • Department of Marine Electronic Systems Faculty of Electronics, Telecommunications and Informatics Gdansk University of Technology Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. FRIEDMAN N. (2006), The naval institute guide to world naval weapon systems, Naval Institute Press.
  • 2. FULLER K.L. (1990), To see and not be seen, IEE Proceedings-F, Vol. 137, 1, 1-10.
  • 3. GRIFFITHS H.D. (1990), New ideas in FM Radar, Electron. Commun. Eng. Journal, Vol. 2, 5, 185-194.
  • 4. HODGES R.P. (2010), Underwater Acoustics: Analysis, Design and Performance of Sonar, John Wiley & Sons, Ltd.
  • 5. KAY L. (1959), A comparison between pulse and frequency-modulation echo-ranging system. J. Brit. IRE, Vol. 19, 2, 105-113.
  • 6. KAY L. (1960), An experimental comparison between pulse and frequency-modulation echo-ranging system. J. Brit. IRE, Vol. 20, 10, 785-796.
  • 7. KROSZCZYŃSKI J.J. (1969), Pulse compression by means of linear-period modulation, Proc. IEEE, Vol. 57, 7, 1260-1266.
  • 8. LATHI B.P., DING Z. (2010), Modern digital and analog communication systems. Oxford University Press. New York.
  • 9. LEVANON N., MOZESON E. (2004), Radar signals, John Wiley & Sons.
  • 10. MCDONOUGH R.N., WHALEN A.D. (1995), Detection of Signals in Noise, (2 ed), Academic Press.
  • 11. MARSZAL, J., SALAMON R., ZACHARIASZ, K., SCHMIDT, A. (2011), Doppler effect in CW FM sonar, Hydroacoustics, Vol. 14, Gdańsk, 157-164.
  • 12. MARSZAL J., SALAMON R. (2012a), Distance measurement errors in silent FM-CW sonar with matched filtering, Metrol. Meas. Syst., Vol. XIX, 2, 321-332.
  • 13. MARSZAL J., SALAMON R., KILIAN L. (2012b), Application of maximum length sequence in silent sonar, Hydroacoustics, Vol. 15, Gdańsk, 143-152.
  • 14. MARSZAL J., SALAMON R. (2013), Silent Sonar for Maritime Security Applications, Proceedings of Meetings on Acoustics, Acoustics Society of America, 2013, Vol. 17, 070082.
  • 15. PACE P.E. (2009), Detecting and Classifying Low Probability of Intercept Radar, (2 ed.), Artech House.
  • 16. SALAMON, R. (2006), Sonar systems, [in Polish], Gdańskie Towarzystwo Naukowe, Gdańsk.
  • 17. SALAMON R., MARSZAL, J., SCHMIDT, J., RUDNICKI, M. (2011a), Silent sonar with matched filtration. Hydroacoustics, Vol. 14, Gdańsk, 199-208.
  • 18. SALAMON R., MARSZAL J., KILIAN L., JEDEL A., RAGANOWICZ A., OSTROWSKI Z. (2011b), Choice of the signals in silent sonar with matched filtration [in Polish], Proceedings of 58th Open Seminar on Acoustics, Vol. 2, Gdańsk – Jurata, 257-266.
  • 19. SALAMON R., MARSZAL J. (2013), Estimating Intercept Range of Silent Sonar, in Hydroacoustics of Shallow Water edited by E. Kozaczka, G. Grelowska, Polish Academy of Sciences Institute of Fundamental Technological Research, Warszawa, 139-158.
  • 20. SKOLNIK, M. (2008), Radar Handbook, Third Edition, McGraw-Hill Professional.
  • 21. STOVE, A.G. (1992), Linear FMCW Radar Techniques, IEE Proceedings-F, Vol. 139, 5, 343-350.
  • 22. VANVOSSEN R., BEERENS S.P., VANDERSPEK E. (2011), Anti-Submarine Warfare With Continuously Active Sonar, Sea Technology, Vol. 52, 11, 33-35.
  • 23. WAITE A.D. (2002), Sonar for practising engineers, Third edition, John Wiley & Sons.
  • 24. WEBSTER J.G. (1999), The Measurement, instrumentation, and sensors handbook, Springer.
  • 25. YANG, J., SARKAR, T.K. (2006), Doppler-invariant property of hyperbolic frequency modulated waveform. Microwave and optical technology letters, Vol. 48, 8, 1174-1179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e97918ed-90bc-4f0b-9481-2191e5358bb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.