PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser treatment with 625 Inconel powder of hot work tool steel using fibre laser YLS-4000

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this investigation was to determine the changes in the surface layer (Inconel 625), obtained during the laser treatment of tool-steel alloy for hot work by the use high-power fibre laser. Design/methodology/approach: Observations of the layer structure, HAZ, and substrate material were made using light and scanning microscopy. The composition of elements and a detailed analysis of the chemical composition in micro-areas was made using the EDS X-ray detector. The thickness of the resulting welds, heat affected zone (HAZ) and the contribution of the base material in the layers was determined. Findings: As a result of laser cladding, using Inconel 625 powder, in the weld overlay microstructure characteristic zones are formed: at the penetration boundary, in the middle of weld overlay and in its top layer. It was found that the height of weld overlay, depth of penetration, width of weld overlay and depth of the heat affected zone grows together with the increasing laser power. Practical implications: Laser cladding is one of the most modern repair processes for eliminating losses, voids, porosity, and cracks on the surface of various metals, including tool alloys for hot work. Laser techniques allow to make layers of materials on the repaired surface, that can significantly differ in chemical composition from the based material (substrate material) or are the same. Originality/value: A significant, dynamic development in materials engineering as well as welding technologies provides the possibility to reduce the cost of production and operation of machinery and equipment, among others by designing parts from materials with special properties (both mechanical and tribological) and the possibility of regeneration of each consumed element with one of the selected welding technologies.
Rocznik
Strony
60--67
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS, ul. Jana III Sobieskiego 12/1, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, The technologies of shaping the structure and properties of the materials engineering surface using laser radiation and other welding technologies, Open Access Library 5 (2011) 181-225 (in Polish).
  • [2] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering; Compendium of knowledge and academic textbook, Open Access Library Annal VIII (1) (2018) 1-1140 (in Polish).
  • [3] M. Hawryluk, Review of selected methods of increasing the life of forging tools in hot die forging processes, Archives of Civil and Mechanical Engineering 16 (2016) 845-866, DOI: http://dx.DOI:0.1016/j.acme.2016.06.001.
  • [4] Z. Gronostajski, M. Kaszuba, S. Polak, M. Zwierzchowski, A. Niechajowicz, M. Hawryluk, The failure mechanisms of hot forming dies, Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing 657 (2016) 147-160, DOI: https://doi.org/10.1016/j.msea.2016.01.030.
  • [5] J. Kusiński, Laser and their applications in materials engineering, WN Akapit, Kraków, 2000 (in Polish).
  • [6] S.R. Lewis, R. Lewis, D.I. Fletcher, Assessment of laser cladding as an option for repairing/enhancing rails, Wear 330-331 (2015) 581-591, DOI: https://doi.org/10.1016/j.wear.2015.02.027.
  • [7] A. Mertens, R. Carrus, J. Lecomte-Beckers, J. Tchufang Tchuindjang, Laser cladding as repair technology for Ti-6Al-4V alloy: Influence of building strategy on microstructure and hardness, Materials & Design 85 (2015) 497-510, DOI: https://doi.org/10.1016/j.matdes.2015.07.035.
  • [8] I. Hutchings, P. Shipway, Surface Engineering, in: Tribology. Friction and Wear of Engineering Materials, Second Edition, Butterworth-Heinemann, 2017, 237-281, DOI: https://doi.org/10.1016/B978-0-08-10910-9.00007-6.
  • [9] A. Wypych, Microstructure and service properties of Inconel 625 as a thermal spraying surface layers, Welding Review 12 (2011) 56-58 (in Polish).
  • [10] H. Smoleńska, J. Łabanowski, W. Kończewicz, Regeneration of Marine engine valves using laser surfacing, Welding International 30/2 (2016) 103-106, DOI: 10.1080/09507116.2014.937615.
  • [11] T.E. Abioye, D.G. McCartney, A.T. Clare, Laser cladding of Inconel 625 wire for corrosion protection, Journal of Materials Processing Technology 217 (2015) 232-240, DOI: https://doi.org/10.1016/j.jmatprotec.2014.10.024.
  • [12] Z. Peilei, L. Xiaopeng, L. Yunlong, Y. Hua, Y. Zhishui, L. Chonggui, L. Qinghua, Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding, Applied Surface Science 311 (2014) 709-714, DOI: https://doi.org/10.1016/j.apsusc.2014.05.141.
  • [13] J. Mazumder, Laser-aided direct metal deposition of metals and alloys, in: M. Brandt (Ed.), Laser Additive Manufacturing. Materials, Design, Technologies, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 2017, 21-53, DOI: https://doi.org/10.1016/B978-0-08-100433-3.00001-4.
  • [14] B. Cevik, B. Gülenc, The effect of welding speed on mechanical and microstructural properties of 5754 Al (AlMg3) alloy joined by laser welding, Materials Research Express 5/8 (2018) 086520 2-11, DOI: 10.1088/2053-1591/aad3b0.
  • [15] K. Schaumberger, V. Mann, M. Mödl, K. Hofmann, S. Srein, S. Rot, M. Schmidt, Influence of focal spot diameter and beam oscillation on the process efficiency of laser beam welding utilizing a direct diode laser, Procedia CIRP 74 (2018) 466-469, DOI: https://doi.org/10.1016/j.procir.2018.08.149.
  • [16] E.O. Olakanmi, S.T. Nyadongo, K. Malikongwa, S.A. Lawal, S.L. Pityna, Multi-variable optimization of the quality characteristics of fiber-laser cladded Inconel 625 composite coatings, Surface and Coatings Technology 357 (2019) 289-303, DOI: https://doi.org/10.1016/j.surfcoat.2018.09.063.
  • [17] E. Jonda, Z. Brytan, K. Lubisz, A. Drygała, The influence of laser surface alloying on the thermal fatigue resistance of hot work tool steels, Archives of Metallurgy and Materials 61/3 (2016) 1309-1314, DOI: https://doi.org/10.1515/amm-2016-0216.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9785756-ace8-4f12-a752-eef6ebc13353
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.