PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The modified Johnson-Cook constitutive model of 2A10 aluminum alloys under electromagnetic impact loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic response description of materials in high-speed impact fields is of practical significance to structural design and practical engineering application. In this paper, an electromagnetic impact (EI) loading process was proposed to acquire dynamic stress-strain relationships of 2A10 aluminum alloys. A modified Johnson-Cook (J-C) material model was obtained by combining with Quasi-static experiments and verified by numerical simulations. Comparing the J-C model obtained by a Split Hopkinson pressure bar, the simulative results about maximum deformation displacements showed the modified J-C model was more in line with actual experimental results. The accuracy under the discharge energy of 4 and 5 kJ was improved by 50% and 11%, respectively. In addition, electromagnetic impact loading characteristics and microstructure evolution of materials were studied. The discharge current with an attenuated sine wave caused that electromagnetic impact forces demonstrated a bimodal trend. The maximum impact velocities reached up to 4.7 m/s and 6.7 m/s under the discharge energy of 4 and 5 kJ, respectively (the maximum strain rates are 655.0 and 932.3 s−1, respectively). The high-speed impact effect led to the emergence of adiabatic shear bands (ASBs) during deformation microstructure evolution. Due to higher impact speed, the deformation concentration degree was more remarkable under the energy of 5 kJ.
Rocznik
Strony
art. no. e74, 2024
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
autor
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
autor
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
Bibliografia
  • 1. Bao L, Li K, Zheng JY, Zhang YL, Zhan K, Yang Z, Zhao B, Ji VC. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes. Surf Coat Tech. 2022;440:128481.
  • 2. Aboura Y, Garner AJ, Euesden R, Barrett Z, Engel C, Holroyd NJH, Prangnell PB, Burnett TL. Understanding the environmentally assisted cracking (EAC) initiation and propagation of new generation 7xxx alloys using slow strain rate testing. Corros Sci. 2022;199:110161.
  • 3. Zhang X, Cui JJ, Xu JR, Li GY. Microstructure investigations on 2A10 aluminum alloy bars subjected to electromagnetic impact upsetting. Mater Sci Eng A. 2017;702:142-52.
  • 4. Wu YH, Liu BX, Kang HJ, Guo EY, Li JH, Du GH, Chen ZN, Wang TM. Ultrasound-assisted dispersion of TiB2 nanoparticles in 7075 matrix hybrid composites. Mater Sci Eng A. 2022;840:142958.
  • 5. Nie HL, Suo T, Wu BB, Li YL, Zhao H. A versatile split Hopkinson pressure bar using electromagnetic loading. Int J Impact Eng. 2018;116:94-104.
  • 6. Gonzalez EV, Maimi P, Camanho PP, Turon A, Mayugo JA. Simulation of drop-weight impact and compression after impact tests on composite laminates. Compos Struct. 2012;94(11):3364-78.
  • 7. Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M. Electromagnetic forming-a review. J Mater Process Tech. 2011;211(5):787-829.
  • 8. Johnson RG, Cook WK. A constitutive model and data for metals subjected to large strains high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. pp:541-547.
  • 9. Cowper GR, Symonds PS. Strain hardening and strain rate effect in the impact in the impact loading of cantilever beams. Providence: Brown University; 1957.
  • 10. Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61(5):1816-25.
  • 11. Kim S, Jo MC, Park TW, Ham J, Sohn SS, Lee S. Correlation of dynamic compressive properties, adiabatic shear banding, and ballistic performance of high-strength 2139 and 7056 aluminum alloys. Mater Sci Eng A. 2021;804:140757.
  • 12. Zhang GH, Zhu ZW, Ning JG, Feng C. Dynamic impact constitutive relation of 6008-T6 aluminum alloy based on dislocation density and second-phase particle strengthening effects. J Alloy Compd. 2023;932:167718.
  • 13. Wan J, Zhu Y, Zhang Y, Zhao H. Strain rate effect and dynamic constitutive model of 7A04-T6 high-strength aluminium alloy. Structures. 2023;53:1250-66.
  • 14. Shubham, Yerramalli CS, Sumant C, Prusty RK, Ray BC. Finite element modelling and experimentation of plain weave glass/epoxy composites under high strain-rate compression loading for estimation of Johnson-Cook model parameters. Int J Impact Eng. 2022;167:104262.
  • 15. Buzyurkin AE, Gladky IL, Kraus EI. Determination and verification of Johnson-Cook model parameters at high-speed deformation of titanium alloys. Aerosp Sci Technol. 2015;45:121-7.
  • 16. Korkmaz ME. Verification of Johnson-Cook parameters of ferritic stainless steel by drilling process: experimental and finite element simulations. J Mater Res Technol. 2020;9(3):6322-30.
  • 17. Li H, Li FH, Zhang R, Zhi XD. High strain rate experiments and constitutive model for Q390D steel. J Constr Steel Res. 2023;206:107933.
  • 18. Jia Z, Guan B, Zang Y, Wang Y, Mu L. Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic strain rates. Mater Sci Eng A. 2021;820:141565.
  • 19. Xie GL, Yu XT, Gao ZF, Xue WL, Zheng L. The modified Johnson-Cook strain-stress constitutive model according to the deformation behaviors of a Ni-W-Co-C alloy. J Mater Res Technol. 2022;20:1020-7.
  • 20. Zhang W, Ouyang SW, Du LM, Sun YX, Lai ZP, Han XT, Li L, Qiu L, Cao QL. Electromagnetic forming with automatic feedback control of Lorentz force distribution: A new forming method and its application to high-uniformity tube deformation. J Mater Process Tech. 2023;313:117869.
  • 21. Song JW, Park JJ, Lee GJ, Lee MK, Park KH, Hong SJ, Lee JG. Effect of Impact Velocity on Interface Characteristics of HT-9 Steel Joints Fabricated by Magnetic Pulse Welding. Met Mater Int. 2020;26(3):360-9.
  • 22. Zhang X, Huang YK, Meng SF, Zhu CC, Li GY, Cui JJ. Adiabatic shearing mechanism on Al-4.2% Cu alloy bars subjected to electromagnetic loading. Arch Civ Mech Eng. 2021;21(1):23.
  • 23. Wang XX, Qi ZC, Chen WL. Investigation of acoustic-plastic constitutive modeling based on Johnson-Cook model and numerical simulation application. Arch Civ Mech Eng. 2021;21(2):77.
  • 24. Yang HL, Wang X, Ni P, Li ZW, Liu HX. Construction of High Strain Rate Loading Constitutive Model and Failure Model and Prediction of Forming Limit for LA103Z Magnesium Alloy. Met Mater Int. 2022;28(8):1938-47.
  • 25. Zhang X, Yu HP, Li CF. Multi-filed coupling numerical simulation and experimental investigation in electromagnetic riveting. Int J Adv Manuf Technol. 2014;73(9-12):1751-63.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e975f97f-e742-45c0-92d8-7342161fe42d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.