PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbial Leaching of Chromium From Solidified Waste Forms – a Kinetic Study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, Thiobacillus thiooxidans (T. thiooxidans) was used to study the microbial stability / degradation of cement-based waste forms. The waste forms contained a chromium salt (CrCl3·6H2O), cement and other additives viz., lime and gypsum in two different proportions. The experimental samples of all the simulated waste forms showed evidence of microbial growth as indicated by substantial increase in sulfate. Chromium leached from the waste forms was found to be lowest in cement – lime solidified waste forms (0.061 mg·1-1) and highest in cement gypsum waste forms (0.22 mg·1-1) after 30 days of exposure. These values were lower than the toxicity characteristic leaching procedure (TCLP), regulatory limit (5 mg·1-1). Model equations based on two shrinking core models (acid dissolution and bulk diffusion model), were used to analyze the kinetics of microbial degradation of cement based waste forms. The bulk diffusion model was observed to fit the data better than the acid dissolution model, as indicated by good correlation coefficients.
Rocznik
Strony
36--42
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
  • National Environmental Engineering Research Institute, CHZL, CSIR Complex, Taramani, Chennai 600 113, India
Bibliografia
  • 1. Sophia A.C., Swaminathan K. 2005. Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste. Chemosphere, 58, 75–82.
  • 2. Conner J.R. 1990. Chemical fixation and solidification of hazardous wastes. Van Nostrand Reinhold. New York.
  • 3. Rossetti V.A., Di Palma L., Medici F. 2002. Assessment of the leaching of metallic elements in the technology of solidification in aqueous solution. Waste Management, 22(6), 605–610.
  • 4. Chong Y.R., Seong K.K., Chang E.K. 2000. Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions. J. Hazardous Materials, B(73), 255–267.
  • 5. Tsivilis S., Batis G., Chaniotakis E., Grigoriadis Gr., Theodossis D. 2000. Properties and behavior of limestone cement concrete and mortar. Cement Concrete Res, 30, 1679–1683.
  • 6. Poon C.S., Chen Z.Q. 1999. Comparison of the characteristics of flow through and flow around leaching tests of solidified heavy metal waste. Chemosphere, 38(3), 663–680.
  • 7. Wang S., Vipulanandan C. 2000. Solidification/stabilization of Cr(VI) with cement Leachability and XRD analyses. Cement Concrete Res, 30, 385–389.
  • 8. Chan Y.M., Agamuthu P., Mahalingam R. 2000. Solidification and stabilization of asbestos waste from an automobile brake manufacturing facility-using cement. J. Hazardous Materials, 77(1-3), 209–226.
  • 9. Sophia A.C., Swaminathan K., Sandhya S. 2007. Microbially-influenced degradation of solidified/ stabilized metal waste. Bioresource Technology, 98, 2562–2567.
  • 10. Idachaba M.A., Nyavor K., Egiebor N.O. 2002. Evaluation of microbial stability of simulated solid and liquid waste forms using a refined biofilm formation method. J. Hazardous Materials, B(90), 279–295.
  • 11. Idachaba M.A., Nyavor K., Egiebor N.O. 2003. Kinetic analysis of data obtained from studies on microbial degradation of cement waste forms, using shrinking core models. J. Hazardous Materials, B(99), 57–69.
  • 12. Mori T., Nonaka T., Tazaki K., Koga M., Hikosaka Y., Noda S. 1992. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res, 26(1), 29–37.
  • 13. Parker C.D. 1945. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulfide. Australian J. Experi. Biolog. Medi. Sci. 23, 81–90.
  • 14. APHA. 1999. Standard Methods for the Examination of Water and Wastewater, 20th edition, American Public Health Association, American Water Works Association, AWWA, Water Environment Federation, WEF, Washington, D.C. U.S.A.
  • 15. Conner J.R., Roger D.S. 1993. Chemistry and Microstructure of Solidified Waste Forms. Lewis Publishers, Ed. London.
  • 16. Diercks M., Sand W., Bock E. 1991. Microbial corrosion of concrete. Experientia, 47, 514–516.
  • 17. Sand W., Bock E. 1988. Biogenic sulphuric acid attack in sewage systems. In: Houghton, D R Smith, R N Eggins, H.O.W. Ed. Biodeterioration, 7. Elsevier Applied Science, London and New York.
  • 18. Sand W. 1987. Importance of Hydrogen Sulfide, Thiosulfate, and Methylmercaptan for Growth of Thiobacilli during Simulation of Concrete Corrosion. Appl. Environ. Microbiol, 53(7), 1645–1648.
  • 19. Idachaba M.A., Nyavor K., Egiebor N.O. 2004. Leaching of chromium from cement waste forms via predominantly biological mechanism. Adv. Environ. Res, 8, 483–491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9730ba3-7172-476e-8ac2-aa32db4c3af8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.