PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Instabilities in membrane tension: Parametric study for large strain thermoplasticity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the numerical analysis of localized deformation for a rectangular plate in membrane tension, modelled with large strain thermoplasticity. The aim is to determine the influence of selected factors on the localization phenomena, which can result from geometrical, material, and thermal softening. Two types of boundary conditions are considered: plane stress and plane strain, as well as two yield functions, Huber–Mises–Hencky and Burzyński–Drucker–Prager, with selected values of friction angle. First, isothermal conditions are considered and next, a conductive case with thermal softening is studied. Moreover, three types of plastic behaviour are analysed: strain hardening (with different values of hardening modulus), ideal plasticity, and strain softening. Numerical tests, performed using AceGen/FEM packages, are carried out for the rectangular plate under tension with an imperfection, using three finite element discretizations. The results for plane strain in the isothermal model show that with the decrease of linear hardening modulus, we can observe stronger mesh sensitivity, while for plane stress, mesh sensitivity is visible for all cases. Furthermore, for the thermomechanical model the results also depend on the mesh density due to insufficient heat conduction regularization.
Rocznik
Strony
1055--1067
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Institute for Computational Civil Engineering, Cracow University of Technology, Cracow, Poland
autor
  • Institute for Computational Civil Engineering, Cracow University of Technology, Cracow, Poland
autor
  • Institute for Computational Civil Engineering, Cracow University of Technology, Cracow, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Science, Warsaw, Poland
Bibliografia
  • [1] F. Aldakheel, C. Miehe, Coupled thermomechanical response of gradient plasticity, Int. J. Plast. 91 (2017) 1–24.
  • [2] R.C. Batra, C.H. Kim, Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands, Int. J. Eng. Sci. 29 (8) (1991) 949–960.
  • [3] A. Benallal, D. Bigoni, Effects on temperature and thermo-mechanical couplings on material instabilities and strain localization of inelastic materials, J. Mech. Phys. Solids 52 (2004) 725–753.
  • [4] D. Bigoni, Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability, Cambridge University Press, Cambridge, 2012.
  • [5] R. de Borst, L.J. Sluys, H.-B. Mühlhaus, J. Pamin, Fundamental issues in finite element analyses of localization of deformation, Eng. Comput. 10 (1993) 99–121.
  • [6] E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity: Theory and Applications, John Wiley & Sons, Ltd., Chichester, UK, 2008.
  • [7] S. Forest, E. Lorentz, Localization phenomena and regularization methods, in: J. Besson (Ed.), Local Approach to Fracture, Les Presses de l'École des Mines, Paris, 2004 311–370.
  • [8] R. Hill, A general theory of uniqueness and stability in elastic– plastic solids, J. Mech. Phys. Solids 6 (1958) 236–249.
  • [9] J. Korelc, Automation of primal and sensitivity analysis of transient coupled problems, Comput. Mech. 44 (2009) 631–649.
  • [10] E.H. Lee, Elastic plastic deformation at finite strain, ASME Trans. J. Appl. Mech. 36 (1969) 1–6.
  • [11] E.H. Lee, D.T. Liu, Finite-strain elastic–plastic theory with application to plane-wave analysis, J. Appl. Phys. 38 (1967) 19–27.
  • [12] J. LeMonds, A. Needleman, Finite element analyses of shear localization in rate and temperature dependent solids, Mech. Mater. 5 (1986) 339–361.
  • [13] S.C.H. Lu, K.S. Pister, Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids, Int. J. Solids Struct. 11 (1975) 927–934.
  • [14] C. Miehe, Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, Comput. Methods Appl. Mech. Eng. 120 (1995) 243–269.
  • [15] L.P. Mikkelsen, Necking in rectangular tensile bars approximated by a 2-D gradient dependent plasticity model, Eur. J. Mech. A/Solids 18 (5) (1999) 805–818.
  • [16] S. Okazawa, Structural bifurcation for ductile necking localization, Int. J. Nonlinear Mech. 45 (2009) 35–41.
  • [17] H. Petryk, Theory of material instability in incrementally nonlinear plasticity, in: H. Petryk (Ed.), Material Instabilities in Elastic and Plastic Solids, Springer-Verlag, Wien/New York, 2000, 261–331, CISM Course Lecture Notes No. 414.
  • [18] M. Ristinmaa, M. Wallin, N.S. Ottosen, Thermodynamic format and heat generation of isotropic hardening plasticity, Acta Mech. 194 (2007) 103–121.
  • [19] J.W. Rudnicki, J.R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids 23 (1975) 371–394.
  • [20] J.C. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part 1. Continuum formulation, Comput. Methods Appl. Mech. Eng. 66 (1988) 199–219.
  • [21] J.C. Simo, C. Miehe, Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Eng. 98 (1992) 41–104.
  • [22] J.C. Simo, Numerical analysis and simulation of plasticity, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis. Numerical Methods for Solids (Part 3), vol. VI, Elsevier Science, Boca Raton, 1998 183–499.
  • [23] S. Stören, J.R. Rice, Localized necking in thin sheets, J. Mech. Phys. Solids 23 (1975) 421–441.
  • [24] G.I. Taylor, H. Quinney, The latent energy remaining in a metal after cold working, Proc. R. Soc. Lond. Ser. A 143 (1934) 307–326.
  • [25] V. Tvergaard, Tensile instabilities at large strains, in: Q.S. Nguyen (Ed.), Bifurcation and Stability of Dissipative Systems, Springer-Verlag, Wien/New York, 1993, 251–291, CISM Courses and Lectures No. 327.
  • [26] B. Wcisło, Simulations of thermal softening in large strain thermoplasticity with degradation, Eng. Trans. 4 (64) (2016) 563–572.
  • [27] B. Wcisło, J. Pamin, Local and non-local thermomechanical modeling of elastic–plastic materials undergoing large strains, Int. J. Numer. Methods Eng. 109 (1) (2017) 102–124.
  • [28] B. Wcisło, J. Pamin, K. Kowalczyk-Gajewska, Gradient-enhanced damage model for large deformations of elastic– plastic materials, Arch. Mech. 65 (5) (2013) 407–428.
  • [29] P.A. Wriggers, C. Miehe, M. Kleiber, J.C. Simo, On the coupled thermomechnical treatment of necking problems via finite element methods, Int. J. Numer. Methods Eng. 33 (1992) 869–883.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e96d1cb0-b601-495b-ab3f-066161c8adce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.