Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main aim of this research is to investigate and mathematically express the relationship between the mixture proportions of rubberized concrete and its thermal conductivity performance. For that purpose, a dataset with a wide range of experimental variables was compiled from the studies available in the literature and one of the most important and widely used machine learning methods, called Artificial Neural Networks, was chosen to establish this mathematical expression strongly and consistently. Two important criteria were taken into consideration when compiling the dataset: firstly, the aggregate had to be of natural normal weight and secondly, the rubber aggregate had to be derived from waste tire and not treated. A reliable, functional, and robust empirical model to estimate the thermal conductivity coefficient of the rubberized concrete was generated in the scope of this study based on the input parameters like cement content (c), water-to-cement ratio (w/c), natural aggregate-to-cement ratio (na/c), rubber aggregate-to-cement ratio (ra/c), and rubber type (rt). The estimation capability of the model was validated using a dataset that the model never faced and was evaluated based on some statistical metrics like R2, MAPE, MSE, etc. The R2, MAPE, and MSE values of the trained model were about 0.984, 4.62%, and 0.002, respectively. Both validation and statistical evaluation results revealed that the model can accurately and reliably estimate the thermal conductivity coefficient of the rubberized concrete. Besides, the statistical metrics of the developed model were in the acceptable range for such models.
Czasopismo
Rocznik
Tom
Strony
art. no. e168, 2023
Opis fizyczny
Bibliogr. 84 poz., rys., wykr.
Twórcy
autor
- Department of Architecture, Bingöl University, Bingöl, Turkey
autor
- Department of Architecture, Bingöl University, Bingöl, Turkey
autor
- Department of Architecture, Bingöl University, Bingöl, Turkey
Bibliografia
- 1. İpek S, Mermerdaş K. Engineering properties and SEM analysis of eco-friendly geopolymer mortar produced with crumb rubber. J Sustain Constr Mat Tech. 2022;7(2):95–107.
- 2. Pilkington B. Tackling the global tire waste problem with pre- tred. AZO CleanTech. 2021. https:// www. azocl eante ch. com/ article.aspx?ArticleID=1227 Accessed 15 Jun 2022.
- 3. Beiram AAH, Al-Mutairee HMK. The effect of chip rubber on the properties of concrete. Mat Today Proc. 2022;60:1981–8. https://doi.org/10.1016/j.matpr.2022.01.209.
- 4. Di Muno R, Petrella A, Notarnicola M. Surface and bulk hydro- phobic cement composites by tyre rubber addition. Constr Build Mater. 2018;172:176–84. https://doi.org/10.1016/j.conbuildmat. 2018.03.233.
- 5. Khan RBN, Khitab A. Enhancing physical, mechanical and thermal properties of rubberized concrete. Eng Tech Quar Rev. 2020;3(1):33–45. https://doi.org/10.5281/zenodo.3852541.
- 6. Assaggaf R, Maslehuddin M, Al-Osta MA, Al-Dulaijan SU, Ahmad S. Properties and sustainability of treated crumb rubber concrete. J Build Eng. 2022;51:104250. https:// doi. org/ 10. 1016/j.jobe.2022.104250.
- 7. Aliabdo AA, Abdelmoaty AM, Abdelbaset MM. Utilization of waste rubber in non-structural applications. Constr Build Mater. 2015;91:195–207. https://doi.org/10.1016/j.conbuildmat.2015. 05.080.
- 8. Zaleska M, Pavlik Z, Citek D, Jankovsky O, Pavlikova M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate—properties and thermal stability. Constr Build Mater. 2019;225:709–22. https://doi.org/10.1016/j.conbuildmat.2019. 07.168.
- 9. Khern YC, Paul SC, Kong SY, Babafemi AJ, Anggraini V, Miah MJ, Savija B. Impact of chemically treated waste rubber tire aggregates on mechanical, durability and thermal properties of concrete. Front Mater. 2020;7:90. https://doi.org/10.3389/fmats. 2020.00090.
- 10. Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A. Progress in used tyres management in the European union: a review. Waste Manage. 2012;32:1742–51. https://doi.org/10.1016/j.wasman. 2012.05.010.
- 11. Güneyisi E, Gesoğlu M, Mermerdaş K, İpek S. Experimental investigation on durability performance of rubberized concrete. Adv Concr Constr. 2014;2(3):193–207.
- 12. Girskas G, Nagrockiene D. Crushed rubber waste impact of concrete basic properties. Constr Build Mater. 2017;140:36–42. https://doi.org/10.1016/j.conbuildmat.2017.02.107.
- 13. Pham TM, Elchalakani M, Hao H, Lai J, Ameduri S, Tran TM. Durability characteristics of lightweight rubberized concrete. Constr Build Mater. 2019;224:584–99. https:// doi. org/ 10. 1016/j.conbuildmat.2019.07.048.
- 14. İpek S. Macro and micro characteristics of eco-friendly fly ash-based geopolymer composites made of different types of recycled sand. J Build Eng. 2022;52:104431. https:// doi. org/ 10.1016/j.jobe.2022.104431.
- 15. Hilburg J. Concrete production produces eight percent of the world's carbon dioxide emissions. The Architects’ Newspaper. 2021. https://www.archpaper.com/2019/01/concrete-production- eight-percent-co2-emissions. Accessed 15 June 2022.
- 16. Guo J, Huang M, Huang S, Wang S. An experimental study on mechanical and thermal insulation properties of rubberized concrete including its microstructure. Appl Sci. 2019;9:2943. https://doi.org/10.3390/app9142943.
- 17. Gandoman M, Kokabi M. Sound barrier properties of sus- tainable waste rubber/geopolymer concretes. Iran Polym J. 2015;24:105–12. https://doi.org/10.1007/s13726-014-0304-1.
- 18. Ataei H. Experimental study of rubber tire aggregates effect on compressive and dynamic load-bearing properties of cylindrical concrete specimens. J Mater Cycles Waste Manage. 2016;18:665–76. https://doi.org/10.1007/s10163-015-0362-2.
- 19. Zaleska M, Pavlikova M, Citek D, Pavlik Z. Mechanical and thermal properties of light-weight concrete with incorporated waste tire rubber as coarse aggregate. AIP Conf Proc. 2019;2170:020026. https://doi.org/10.1063/1.5132745.
- 20. Li D, Zhuge Y, Gravina R, Mills JE. Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab. Constr Build Mater. 2018;166:745–59. https://doi.org/10.1016/j.conbuildmat.2018.01.142.
- 21. Gupta T, Chaudhary S, Sharma R. Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Constr Build Mater. 2014;73:562–74. https://doi.org/10.1016/j.conbuildmat.2014.09.102.
- 22. Medina NF, Medina DF, Hernandez-Olivares F, Navacerrada MA. Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Constr Build Mater. 2017;144:563–73. https://doi.org/10.1016/j.conbuildmat.2017. 03.196.
- 23. Thomas BS, Gupta RC, Panicker VJ. Recycling of waste tire rubber as aggregate in concrete: durability-related performance. J Clean Prod. 2016;112:504–13. https://doi.org/10.1016/j.jclep ro.2015.08.046.
- 24. Najim KB, Hall MR. A review of the fresh/hardened properties and applications for plain (PRC) and self-compacting rubberised concrete (SCRC). Constr Build Mater. 2010;24(11):2043– 51. https://doi.org/10.1016/j.conbuildmat.2010.04.056.
- 25. Aiello MA, Leuzzi F. Waste tyre rubberized concrete: properties at fresh and hardened state. Waste Manage. 2010;30(8–9):1696– 704. https://doi.org/10.1016/j.wasman.2010.02.005.
- 26. Li G, Stubblefield MA, Garrick G, Eggers J, Abadie C, Huang B. Development of waste tire modified concrete. Cem Concr Res. 2004;34(12):2283–9. https://doi.org/10.1016/j.cemconres. 2004.04.013.
- 27. Chen Z, Li L, Xiong Z. Investigation on the interfacial behav- iour between the rubber-cement matrix of the rubberized concrete. J Clean Prod. 2019;209:1354–64. https:// doi. org/ 10. 1016/j.jclepro.2018.10.305.
- 28. Dumne SM. An experimental study on performance of recycled tyre rubber-filled concrete. Int J Eng Res Tech. 2013;2(12):766–72.
- 29. Mohammed BS. Structural behavior and m–k value of com- posite slab utilizing concrete containing crumb rubber. Constr Build Mater. 2010;24(7):1214–21. https:// doi. org/ 10. 1016/j. conbuildmat.2009.12.018.
- 30. Taha MMR, El-Dieb AS, Abd El-Wahab MA, Abdel-Hameed ME. Mechanical, fracture, and microstructural investigations of rubber concrete. J Mater Civ Eng. 2008;20(10):640–9. https:// doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640).
- 31. Topçu IB. The properties of rubberized concrete. Cem Concr Res. 1995;25(2):304–10. https://doi.org/10.1016/0008-8846(95) 00014-3.
- 32. Atahan AO, Yücel AÖ. Crumb rubber in concrete: static and dynamic evaluation. Constr Build Mater. 2012;36:617–22. https://doi.org/10.1016/j.conbuildmat.2012.04.068.
- 33. Youssf O, Hassanli R, Mills JE. Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content. J Build Eng. 2017;11:115–26. https://doi. org/10.1016/j.jobe.2017.04.011.
- 34. Gurunandan M, Phalgun M, Raghavendra T, Udayashankar BC. Mechanical and damping properties of rubberized concrete con- taining polyester fibers. J Mater Civ Eng. 2019;31(2):04018395. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002614.
- 35. Miller NM, Tehrani FM. Mechanical properties of rubber- ized lightweight aggregate concrete. Constr Build Mater. 2017;147:264–71. https://doi.org/10.1016/j.conbuildmat.2017. 04.155.
- 36. Herrero S, Mayor P, Hernandez-Olivares F. Influence of propor- tion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars. Mater Des. 2013;47:633–42. https://doi.org/10.1016/j. matdes.2012.12.063.
- 37. Guo S, Dai Q, Si R, Sun X, Lu C. Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J Clean Prod. 2017;148:681–9. https:// doi. org/ 10. 1016/j.jclepro.2017.02.046.
- 38. Zhang B, Poon CS. Sound insulation properties of rubberized lightweight aggregate concrete. J Clean Prod. 2018;172:3176–85. https://doi.org/10.1016/j.jclepro.2017.11.044.
- 39. Ghizdavet Z, Stefan BM, Nastac D, Vasile O, Bratu M. Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix. Constr Build Mater. 2016;124:755–63. https:// doi.org/10.1016/j.conbuildmat.2016.07.145.
- 40. Najim KB, Hall MR. Workability and mechanical properties of crumb-rubber concrete. Const Mater. 2013;166(1):7–17. https:// doi.org/10.1680/coma.11.00036.
- 41. Hall MR, Najim KB, Hopfe CJ. Transient thermal behaviour of crumb rubber-modified concrete and implications for thermal response and energy efficiency in buildings. Appl Therm Eng. 2012;33–34:77–85. https:// doi. org/ 10. 1016/j. applt herma leng. 2011.09.015.
- 42. Al Rawahi Z, Waris MB. Use of recycled tires in non-structural concrete. MATEC Web Conf. 2017;120:03002. https://doi.org/10. 1051/matecconf/201712003002.
- 43. Kantasiri T, Kasemsiri P, Pongsa U, Hiziroglu S. Properties of light weight concrete containing crumb rubber subjected to high temperature. Key Eng Mater. 2016;718:177–83. https://doi.org/ 10.4028/www.scientific.net/KEM.718.177.
- 44. Pacheco-Torres R, Cerro-Prada E, Varela F. Fatigue performance of waste rubber concrete for rigid road pavements. Constr Build Mater. 2018;176:539–48. https://doi.org/10.1016/j.conbuildmat. 2018.05.030.
- 45. Güneyisi E, Gesoğlu M, Naji N, İpek S. Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models. Arch Civ Mech Eng. 2016;16:9–19. https:// doi. org/ 10. 1016/j. acme. 2015.09.003.
- 46. Gupta T, Tiwari A, Siddique S, Sharma RK. Response assessment under dynamic loading and microstructural investigations of rubberized concrete. J Mater Civ Eng. 2017;29(8):04017062. https:// doi.org/10.1061/(ASCE)MT.1943-5533.0001905.
- 47. Kew HY, Cairns R, Kenny MJ. The use of recycled rubber tyres in concrete. In: Limbachiya M, Roberts JJ, editors. Sustainable waste management and recycling: used/post-consumer tyres. Lon- don, U.K.: Thomas Telford Publishing; 2004. p. 135–42. ISBN 0727732862.
- 48. Khaloo AR, Dehestani M, Rahmatabadi P. Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manage. 2008;28(12):2472–82. https://doi.org/10.1016/j. wasman.2008.01.015.
- 49. Murugan RB, Natarajan C, Chen SE. Material development for a sustainable precast concrete block pavement. J Traffic Transp Eng. 2016;3(5):483–91. https://doi.org/10.1016/j.jtte.2016.09.001.
- 50. Gupta T, Chaudhary S, Sharma RK. Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J Clean Prod. 2016;112(1):702–11. https:// doi. org/ 10. 1016/j.jclepro.2015.07.081.
- 51. Marie I. Thermal conductivity of hybrid recycled aggregate—rubberized concrete. Constr Build Mater. 2017;133:516–24. https:// doi.org/10.1016/j.conbuildmat.2016.12.113.
- 52. Kim KH, Jeon SE, Kim JK, Yang S. An experimental study on thermal conductivity of concrete. Cem Concr Res. 2003;33(3):363–71. https:// doi. org/ 10. 1016/ S0008- 8846(02) 00965-1.
- 53. Shanmuganathan SE, Samarasinghe SE. Artificial neural network modelling. Switzerland: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-28495-8.
- 54. İpek S, Güneyisi E. Application of Eurocode 4 design provisions and development of new predictive models for eccentrically loaded CFST elliptical columns. J Build Eng. 2022;48:103945. https://doi.org/10.1016/j.jobe.2021.103945.
- 55. Soni A, Yusuf M, Beg M, Hashmi AW. An application of artificial neural network (ANN) to predict the friction coefficient of nuclear grade graphite. Mat Today Proc. 2022;68(4):701–9. https://doi. org/10.1016/j.matpr.2022.05.567.
- 56. Ahmadi M, Naderpour H, Kheyroddin A. A proposed model for axial strength estimation of non-compact and slender square CFT columns. Iran J Sci Technol Trans Civ Eng. 2019;43:131–47. https://doi.org/10.1007/s40996-018-0153-9.
- 57. Nejad RM, Sina N, Ma W, Liu Z, Berto F, Gholami A. Optimi- zation of fatigue life of pearlitic grade 900A steel based on the combination of genetic algorithm and artificial neural network. Int J Fatigue. 2022;162:106975. https://doi.org/10.1016/j.ijfatigue. 2022.106975.
- 58. Tam VWY, Butera A, Le KN, Da Silva LCF, Evangelista ACJ. A prediction model for compressive strength of CO 2 concrete using regression analysis and artificial neural networks. Constr Build Mater. 2022;324:126689. https://doi.org/10.1016/j.conbuildmat. 2022.126689.
- 59. Ahmadi M, Naderpour H, Kheyroddin A. Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Arch Civ Mech Eng. 2014;14(3):510–7. https://doi.org/10.1016/j.acme.2014.01.006.
- 60. Lu F, Liang Y, Wang X, Gao T, Chen Q, Liu Y, Zhou Y, Yuan Y, Liu Y. Prediction of amorphous forming ability based on artificial neural network and convolutional neural network. Comput Mater Sci. 2022;210:111464. https://doi.org/10.1016/j.commatsci.2022. 111464.
- 61. Goyal A, Walia GK, Kaur S. Implementation of back propaga- tion algorithm using MATLAB. Inter J Inf Tech Know Manage. 2012;5(2):429–31.
- 62. Singh A, Saxena P, Lalwani S. A study of various training algo- rithms on neural network for angle based triangular problem. Inter J Comp App. 2013;71(13):30–6. https://doi.org/10.5120/ 12420-8988.
- 63. Cömert Z, Kocamaz AF. A study of artificial neural network train- ing algorithms for classification of cardiotocography signals. J Sci Tech. 2017;7(2):93–103.
- 64. Chinnasamy S, Chitradevi M, Geetharamani G. Classification of cardiotocogram data using neural network based machine learning technique. Inter J Comp App. 2012;47(14):19–25. https://doi.org/ 10.5120/7256-0279.
- 65. Quesada A. 5 Algorithms to train a neural network. 2023. https:// www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_ network. Accessed 22 Apr 2023.
- 66. Levenberg K. A method for the solution of certain problems in least squares. Q Appl Math. 1994;5:164–8.
- 67. Marquardt D. An algorithm for least square estimation of nonlin- ear parameters. SIAM J App Math. 1963;11(2):431–41.
- 68. Yacim JA, Boshoff DGB. Impact of artificial neural networks training algorithms on accurate prediction of property values. J Real Estate Res. 2018;40(3):375–418. https://doi.org/10.1080/ 10835547.2018.12091505.
- 69. Yu H, Wilamowski BM. Levenberg-marquardt training in indus- trial electronics handbook—intelligent systems. In: Wilamowski BM, Irwin JD, editors. The industrial electronics handbook, 2nd edn. Boca Raton: CRC Press; 2011.
- 70. Battiti R. First-and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput. 1992;4(2):141–66. https://doi.org/10.1162/neco.1992.4.2.141.
- 71. Livieris I, Pintelas PE. A survey on algorithms for training artifi- cial neural networks. Tech Rep. TR08–01, Department of Mathematics, University of Patras, Patras, Greece, 2008.
- 72. Gill P, Murray W, Wright MH. Practical optimization. Cambridge: Academic Press; 1981.
- 73. Powell MJD. Restart procedures for the conjugate gradient method. Math Program. 1977;12(1):241–54.
- 74. Sukontasukkul P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Constr Build Mater. 2009;23:1084–92. https://doi.org/10.1016/j.conbuildmat.2008.05. 021.
- 75. Ghedan RH, Hamza DM. Effect of rubber treatment on compres- sive strength and thermal conductivity of modified rubberized concrete. J Eng Dev. 2011;15(4):21–9.
- 76. Jedidi M, Gargouri A, Daoud A. Effect of rubber aggregates on the thermophysical properties of self-consolidating concrete. J Bioprocess Biotech. 2014;4(3):1000156. https://doi.org/10.4172/ 2155-9821.1000156.
- 77. Malagavelli V, Parmar RS, Rao PN. Thermal conductivity and impact resistance of concrete using partial replacement of coarse aggregate with rubber. Jordan J Civ Eng. 2016;10(2):145–62.
- 78. Hamza B, Belkacem M, Said K, Walid Y. Performance of self-compacting rubberized concrete. MATEC Web Conf. 2017;149:01070. https://doi.org/10.1051/matecconf/2018149010 70.
- 79. Zaleska M, Citek D, Pavlikova M, Pavlik Z. Thermal properties of lightweight concrete with scrap tire rubber-based aggregate. AIP Conf Proc. 2018;1988:020036. https://doi.org/10.1063/1.50476 30.
- 80. Al-Osta MA, Al-Tamimi AS, Al-Tarbi SM, Baghabra OSB, Al- Awsh WA, Saleh TA. Development of sustainable concrete using recycled high-density polyethylene and crumb tires: mechanical and thermal properties. J Build Eng. 2022;45:103399. https://doi. org/10.1016/j.jobe.2021.103399.
- 81. Kamel AR, Ali AH, Kadhum MM, Kadhum MM. Effect of the waste rubber tires aggregate on some properties of normal concrete. Eng Tech J. 2022;40(01):275–81.
- 82. Mermerdaş K, İpek S, Işıker Y, Ulusoy A. Thermal conductivity, abrasion resistance and compressive strength of end-of-life tire aggregate incorporated concrete. J Sustain Constr Mat Tech. 2023;8(1):35–46.
- 83. Behnood A, Golafshani EM. Predicting the dynamic modulus of asphalt mixture using machine learning techniques: an application of multi biogeography-based programming. Constr Build Mater. 2021;266:120983. https://doi.org/10.1016/j.conbuildmat.2020. 120983.
- 84. Güneyisi E. Axial compressive strength of square and rectangular CFST columns using recycled aggregate concrete with low to high recycled aggregate replacement ratios. Constr Build Mater. 2023;367:130319. https://doi.org/10.1016/j.conbuildmat.2023. 130319.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e96509a8-ef85-4e1e-9c94-29e3467f7b56