Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Eco-friendly saponin from soapnut was studied for the remediation of the soils contaminated by lead. This study applied a full factorial design of the experiment with 3-factors in 3-level (3×3 factors) to evaluate the effect and interactions of the washing parameters on the lead removal by soapnut in a batch experiment. The parameters studied include: soil-solution ratio, surfactant concentrations by mass, and pH of the washing solution. Two soil samples representing low lead concentration (C1) and high lead concentration (C2) were investigated. The findings indicate that the removal efficiency obtained, increases along with the soil-solution ratio and surfactant concentration, but decreases with an increase in the pH of washing solution. Polynomial models were developed to predict the experimental response and optimal conditions. The model predicted a maximum of 50.54% and 47.44% lead removal from the contaminated soil C1 and C2, respectively. Multiple washing was investigated using the higher values of the parameters; the responses obtained significantly increased the percentage of lead removed and achieved 79.98% removal for C1 and 77.49% removal for C2. The effective performance of the soil washing process demonstrates the potential usage of soapnut saponin in the remediation of contaminated soil. Saponin from soapnut is cheap and environment-friendly.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--16
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- School of Energy, Geoscience, Infrastructure & Society, Heriot-Watt University, Water Academy, EGIS 2.02A William Arrol Building, EH14 4AS Scotland, United Kingdom
autor
- School of Energy, Geoscience, Infrastructure & Society, Heriot-Watt University, Water Academy, EGIS 2.02A William Arrol Building, EH14 4AS Scotland, United Kingdom
autor
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, 83000 Hermosillo, Sonora, Mexico
autor
- Facultad de Ingenieria, Universidad Autónoma de San Luis Potosi, Av. Manuel Nava No. 8, Zona Universitaria, 78290 San Luis Potosi, SLP, Mexico
autor
- Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Geociencias Aplicadas, Camino a la Presa San Jose No. 2055, Col. Lomas 4a Sec., 78216 San Luis Potosi, SLP, Mexico
autor
- Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Geociencias Aplicadas, Camino a la Presa San Jose No. 2055, Col. Lomas 4a Sec., 78216 San Luis Potosi, SLP, Mexico
Bibliografia
- 1. Abumaizar, R.J. & Smith, E.H. 1999. Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials, 70, 71-86.
- 2. Adeniji, A. 2004. Bioremediation of arsenic, chromium, lead, and mercury. National network of enviromental management studies fellow for US Enviromental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office. Washington, DC.
- 3. Açikel, Y.S. 2011. Use of biosurfactants in the removal of heavy metal ions from soils. Biomanagement of metal-contaminated soils. Springer.
- 4. Bustamante, M., Duran, N. & Diez, M. 2012. Biosurfactants are useful tools for the bioremediation of contaminated soil: A review. Journal of Soil Science and Plant Nutrition, 12, 667-687.
- 5. Chang, J.-H., Shi, Y.-H. & Tung, C.-H. 2010. Stepwise addition of chemical reagents for enhancing electrokinetic removal of cu from real site contaminated soils. Journal of Applied Electrochemistry, 40, 1153-1160.
- 6. Cheng, S. 2003. Heavy metal pollution in China: origin, pattern and control. Environmental Science and Pollution Research, 10, 192-198.
- 7. Fakayode, S.O. & Olu-Owolabi, B. 2003. Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: Its relationship to traffic density and proximity to highways. Environmental Geology, 44, 150-157.
- 8. Franzetti, A., Gandolfi, I., Fracchia, L., Van Hamme, J., Gkorezis, P., Marchant, R. & Banat, I.M. 2014. Biosurfactant Use in Heavy Metal Removal from Industrial Effluents and Contaminated Sites. Biosurfactants: Production and Utilization—Processes, Technologies, and Economics, 361.
- 9. Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. & Toulmin, C. 2010. Food security: the challenge of feeding 9 billion people. science, 327, 812-818.
- 10. Gusiatin, Z.M. & Klimiuk, E. 2012. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere, 86, 383-391.
- 11. Gäbler, H.-E. & Schneider, J. 2000. Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environmental Geology, 39, 774-782.
- 12. Hong, K.-J., Tokunaga, S. & Kajiuchi, T. 2002. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere, 49, 379-387.
- 13. Hseu, Z.-Y., Chen, Z.-S., Tsai, C.-C. & Jien, S.-H. 2016. Portable X-ray fluorescence (pXRF) for determining Cr and Ni contents of serpentine soils in the field. Digital Soil Morphometrics. Springer.
- 14. Hurni, H. 1996. Precious earth: from soil and water conservation to sustainable land management, Centre for Development and Environment (CDE); Geographica Bernensia.
- 15. Imani, S., Rezaei-Zarchi, S., Hashemi, M., Borna, H., Javid, A. & Abarghouei, H.B. 2011. Hg, Cd and Pb heavy metal bioremediation by Dunaliella alga. Journal of Medicinal Plants Research, 5, 2775-2780.
- 16. Järup, L. 2003. Hazards of heavy metal contamination. British medical bulletin, 68, 167-182.
- 17. Kobayashi, T., Kaminaga, H., Navarro, R.R. & Iimura, Y. 2012. Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbonscontaminated soil. Journal of Environmental Science & Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 47, 1138-1145.
- 18. Kommalapati, R.R., Valsaraj, K.T., Constant, W.D. & Roy, D. 1998. Soil flushing using colloidal gas aphron suspensions generated from a plant-based surfactant. Journal of Hazardous Materials, 60, 73-87.
- 19. Li, X., Poon, C.-S. & Liu, P. S. 2001. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied geochemistry, 16, 1361-1368.
- 20. Lin, S.C. 1996. Biosurfactants: recent advances. Journal of Chemical Technology and Biotechnology, 66, 109-120.
- 21. Luna, J.M., Rufino, R.D. & Sarubbo, L.A. 2016. Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection.
- 22. Maity, J.P., Huang, Y.M., Fan, C.-W., Chen, C.-C., Li, C.-Y., Hsu, C.-M., Chang, Y.-F., Wu, C.-I., Chen, C.-Y. & Jean, J.-S. 2013a. Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from contaminated soils in HaiPu, Taiwan. Journal of Environmental Sciences, 25, 1180-1185.
- 23. Maity, J.P., Huang, Y. M., Hsu, C.-M., Wu, C.-I., Chen, C.-C., Li, C.-Y., Jean, J.-S., Chang, Y.-F. & Chen, C.-Y. 2013b. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: a comparative effectiveness assessment. Chemosphere, 92, 1286-1293.
- 24. Manta, D.S., Angelone, M., Bellanca, A., Neri, R. & Sprovieri, M. 2002. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229-243.
- 25. Micó, C., Recatalá, L., Peris, M. & Sánchez, J. 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863-872.
- 26. Moon, D., Jo, R., Koutsospyros, A., Cheong, K. & Park, J.-H. 2015. Soil Washing of Fluorine Contaminated Soil Using Various Washing Solutions. Bulletin of Environmental Contamination & Toxicology, 94, 334.
- 27. Morf, L.S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Di Lorenzo, F. & Böni, D. 2013. Precious metals and rare earth elements in municipal solid waste – sources and fate in a Swiss incineration plant. Waste Management, 33, 634-644.
- 28. Mukhopadhyay, S., Hashim, M., Allen, M. & Gupta, B.S. 2015. Arsenic removal from soil with high iron content using a natural surfactant and phosphate. International Journal of Environmental Science and Technology, 12, 617-632.
- 29. Mulligan, C., Yong, R. & Gibbs, B. 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering geology, 60, 193-207.
- 30. Mulligan, C.N. 2009. Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 14, 372-378.
- 31. Mulligan, C.N., Yong, R.N. & Gibbs, B.F. 1999a. On the use of biosurfactants for the removal of heavy metals from oil‐contaminated soil. Environmental Progress, 18, 50-54.
- 32. Mulligan, C.N., Yong, R.N., Gibbs, B.F., James, S. & Bennett, H. 1999b. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environmental Science & Technology, 33, 3812-3820.
- 33. Qixing, Z. 2002. Technological reforger and prospect of contaminated soil remediation. Technigues and Equipment for Enviro. Poll. Cont, 8, 009.
- 34. Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F. & Monroy, M. 2004. Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, & Soil Pollution, 152, 129-152.
- 35. Roy, D., Kommalapati, R., Mandava, S., Valsaraj, K. & Constant, W. 1997. Soil washing potential of a natural surfactant. Environmental Science & Technology, 31, 670-675.
- 36. Sarubbo, L., Rocha Jr, R., Luna, J., Rufino, R., Santos, V. & Banat, I. 2015. Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry and Ecology, 31, 707-723.
- 37. Sharma, R.K., Agrawal, M. & Marshall, F. 2007. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258-266.
- 38. Shin, K.-H., Kim, K.-W. & Ahn, Y. 2006. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization–biodegradation process. Journal of Hazardous Materials, 137, 1831-1837.
- 39. Soberón-Chávez, G. & Maier, R.M. 2011. Biosurfactants: a general overview. Biosurfactants. Springer.
- 40. Soll, R. & Blanco, F. 2001. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome. The Cochrane Library.
- 41. Venkatesh, N.M. & Vedaraman, N. 2012. Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Annals of Microbiology, 62, 85-91.
- 42. Wang, S. & Mulligan, C.N. 2004. An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere, 57, 1079-1089.
- 43. Wei, B. & Yang, L. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99-107.
- 44. Wuana, R., Okieimen, F. & Imborvungu, J. 2010. Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science & Technology, 7, 485-496.
- 45. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F. & Zhang, G. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84-91.
- 46. Zhang, C., Valsaraj, K.T., Constant, W.D. & Roy, D. 1998. Surfactant screening for soil washing: Comparison of foamability and biodegradability of a plant‐based surfactant with commercial surfactants. Journal of Environmental Science & Health Part A, 33, 1249-1273.
- 47. Zhou, W., Wang, X., Chen, C. & Zhu, L. 2013. Enhanced soil washing of phenanthrene by a plantderived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 122-128.
- 48. Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., Wei, X. & Cai, X. 2009. The study of operating variables in soil washing with EDTA. Environmental Pollution, 157, 229-236.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e961fa68-f104-4bd8-bb91-5602df087a38