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ABSTRACT 

The position of the phase transition in the two dimensional Ising model were determined by 

using Monte Carlo simulation in a quadratic for area of variable length with external magnetic field 

switched off (B = 0). The magnetization  M per site   , magnetic susceptibility   of a 

ferromagnetic and paramagnetic materials were calculated as a function of temperature T for 

 6060,4040,2020  ,  200200,120120,8080   spin lattice interactions. Nearest neighbor 

interaction is assumed (i.e. each spin has 4 neighbors); uses periodic boundary conditions. The Curie 

temperature  BC kJT 27.2  is determined by measuring the magnetic susceptibility at which the 

ferromagnetic and paramagnetic undergoes a phase change from order to disorder. There is thus a 

phase transition defined by the Curie temperature. The Monte Carlo method were used to check these 

results and to confirm the phase transition. The data are analyzed using the Curie-Weiss law which 

contains the Curie temperature as a parameter. 
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1.  INTRODUCTION 

 

Ferromagnetic materials show ferromagnetic behavior only below a critical temperature 

called the Curie temperature, above which the material has normal paramagnetic behavior. 

The approach to ferromagnetism as a function of temperature from above is described 

by the Curie-Weiss Law which gives the magnetic susceptibility as a function of temperature. 
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 where  and   are the magnetic susceptibility and relative magnetic permeability of the 

material respectively. C  is a constant characteristic for a given substance and CT  is the Curie 

temperature. Equetion 1 is only valid above the Curie temperature [1,2]. 

Imagine a quadratic 2d area with 
2L  spins on a grid. Each spin can either point up 

(+1) or down (-1). The average magnetization of the area is the average spin value and hence 

between 1 (completely ordered state) and 0. Neighboring spins S and S' interact with an 

interaction energy of SSJE  . Since each spin has 4 nearest neighbors (periodic 

boundary conditions), the interaction energy per spin can be between  J4  (all neighbors 

parallel to the center spin) and  J4 (all 4 neighbors antiparallel to center spin) where  J  is 

the coupling strength. (There is no external magnetic field present) [3,4] . 

Generally, states with less energy are preferred, so the system stays in completely 

ordered state for zero temperature. However, as we increase temperature, each spin has a 

thermal energy of kBT (where kB is Boltzmann's constant and T is the absolute temperature). 

Due to this thermal energy, the system does not stay in completely ordered state but spins 

start to fluctuate ("flip") randomly. 

There is a phase transition at the critical temperature of  BC kJT 27.2 : Starting with 

a completely ordered state, the system stays mostly ordered below the critical temperature 

while it goes completely unordered above it.  

Hence, above the critical temperature, the average magnetization is (about) zero while it 

is non-zero below it. On the two-dimensional lattice each spin interacts with its four 

neighbors as shown in Figure 1 [4]. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1. An example 2-dimensional Ising model spin configuration [5]. 
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2.  THE ISING MODEL 

 

The Hamiltonian for a system that is dependent on the arrangement  of spins on a lattice 

and from that we can deduce properties such as magnetization and susceptibility [5,6,7]. 

Suppose that the Hamiltonian is 
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  internal interaction energy            external magnetic energy  

    

where ji means that we sum over the nearest-neighbor pair of spins. This means that the 

spin at site ji interacts with spins at sites  1ji  and  1ij  respectively. We are 

assuming periodic boundary conditions in our model which means that every spin will 

interact with four other spins regardless of their position on the finite lattice. Here J  is the 

dimensionless interaction strength and B represents the energy involved in the magnetization 

of the lattice and is also dimensionless. 

The Ising model considers the problem in two dimensions and places dipole spins at 

regular lattice points while restricting their spin axis to be either up (+y) or down (-y).  

The lattice configuration is square with dimensions L and the total number of spins 

equal to LLN  . In its simplest form the interaction range amongst the dipoles is restricted 

to immediately adjacent sites (nearest neighbors). This produces a Hamiltonian for a specific 

spin site, i , of the form [8-10] : 

 

                                               


jnn

jii ssJH
                                                      (3)     

 

where the sum nnj  runs over the nearest neighbors of i . The coupling constant between 

nearest neighbors is represented by J while the is  and js  are the respective nearest neighbor  

spins.  

The nature of the interaction in the model is all contained in the sign of the interaction 

coupling constant J . If J is positive it would mean that the material has a ferromagnetic 

nature (parallel alignment) while a negative sign would imply that the material is anti-

ferromagnetic (favors anti-parallel alignment). J  will be taken to be 1  in our discussion 

and the values for spins will be 1  for spin up and 1  for spin down. A further 

simplification is made in that BkJ  is taken to be unity.  

The relative positioning of nearest neighbors of spins is shown in Figure 2 with the 

darker dot being interacted on by its surrounding neighbors [9,10]. 
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Figure 2. Nearest neighbor coupling. The dark dot, at position (x,y), is being interacted upon by its 

nearest neighbors which are one lattice spacing away from it [9]. 

 

 

In the simulation, whenever flipping a spin lowers the interaction energy, the flip is 

done. If it increases the energy, the flip is only committed with a probability of exp(-ßE) 

where ß=1/kBT and (E >0) is the energy difference between flipped and unflipped state 

(Metropolis algorithm). As one can see, the relevant temperature can be expressed in units of 

ßJ which is called the reduced temperature and is the "natural" temperature unit used 

throughout the implementation [4]. 

The simulation repeatedly computes so-called MCS (Monte-Carlo step), commonly 

also referred to as time, each of whom involves the potential flipping (as explained above) of 

all spins in the area [4]. 

 

 

3.  RESULTS AND DISCUSSION 

3. 1. Effect of the size  

In order to see the effect of the size of the lattice on the transition of the phase, the 

square of the magnetization against T, for each size and for five temperatures in the range 

(2.25-2.29 J/kB) is plotted in Figure 3 for three lattice of sizes  60,40,20 for (200000 steps 

each), in the absence of the external magnetic field. 

In Figure 3, at low temperature below ( Tc = 2.27 J/kB) the square of the magnetization 

were all most stable for all lattice sizes.  

While at higher temperatures above ( Tc = 2.27 J/kB) the square of the magnetization 

disorder and the fluctuation are larger for all lattice sizes . 
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Figure 3. Magnetization square as a function of temperature at  BC kJT 27.2  for three of kinds 

lattices  6060,4040,2020  , in the absence of the magnetic field . 

 

3. 2. Relaxation  

Starting from a completely ordered state, this displays the average magnetization over 

time (i.e. MCS) at a reduced temperature for lattice  200200   in the absence of magnetic 

field  0B  has been shown in Figure 4.  

In the first case (green graph) where the temperature is below the critical temperature 

the magnetization and the system stays mostly ordered, while in the second case (red graph) 

where the temperature is above the critical temperature the magnetization fluctuating 

thermically around zero and the system rapidly goes in to completely unordered state . 
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Figure 4. Average magnetization over time (i.e. MCS) at a reduced temperature for lattice  200200  
in the absence of the magnetic field . 

 

3. 3. Magnetization 

The phase transition can most easily be seen when starting with a completely ordered 

state and computing the average magnetization after lots of (MCS) for different temperatures. 

Figure 5, shows the absolute value of the average magnetization versus temperature from (1 to 

4J /kB) for area sizes  6060  (violet graph) and   120120  (blue graph). For zero 

temperature, the state stays completely ordered for both lattice . As temperature increased, the 

magnetization of  both lattice  starts to drop more and more rapidly until reaching the phase 

transition (at critical temperature). Above the critical temperature  CT of about (J/kB=2.27), 

the absolute average magnetization is nearly zero. The larger the area lattice  120120  the 

more drastic the effect of the thermal fluctuations cancel better than the smaller area lattice 

 6060 when averaging. 
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Figure 5. Magnetization as a function of temperature for two of kinds lattices  120120,6060  , in the 

absence of the magnetic field . 

 

 

In Figure 6 a phase transition is clearly seen below  BC kJT 27.2 for lattice  2020  
in the absence of the magnetic field. 

At lower temperature , the system strongly favors the ground states. These are the states 

with all spins aligned, either all up  1M
 or all down  1M .  

At temperature higher than the phase transition, the spins tend to be randomly aligned, 

which results in  0M . 

This corresponds to a high temperature (the crossing of Curie's temperature) since 

 TkEJ  which means that  J
 is inversely proportional toT . However, as the interaction 

strength increased the spins tend to align.  
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Figure 6. Magnetization as a function of temperature for the  2020   particle lattice in the absence 

of the magnetic field. 

 

2. 4. Susceptibility 

 

At ( T > TC ) the susceptibility is in phase paramagnetic where the Curie-Weiss law
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X  can be applied from  CT0  for  4040  lattice (see  Figure 7).  

At high temperature ( T > TC )the paramagnetic susceptibility decrease and the effect of 

the thermal agitation appears to cause in neglecting the effect of the intrinsic molecular field. 
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Figure 7. show the susceptibility paramagnetic region for lattice  4040  

 

The separation between the paramagnetic region and the ferromagnetic region for 

 8080  lattice in the absence of the external magnetic field (B=0 ) can be described in two 

ways .  

In Figure 8, where ( T < TC ) the Curie-Weisslaw 
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 CT0  as the susceptibility has negative values. 
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Figure 8. The paramagnetic region and the ferromagnetic region in lattice  8080    

 

 

This can be clear in Figure 9 where at  CTT  , the susceptibility  x  goes to infinite 

value   x , while it becomes finite with high values until it becomes zero  0x .  

This means that it has a spontaneous magnetization and becomes in the phase of the 

ferromagnetic state in the absence of magnetic field for lattice  2020 .  
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Figure 9. Susceptibility depends on temperature for ferromagnetic materials in lattice  2020  . 

 

 

4.  CONCLUSION 

 

The Monte Carlo method applied to the Ising model which describes the magnetic 

properties of materials (lattices) allows to obtain the thermodynamic quantities variations with 

different lattice sizes at Curie temperature  BC kJT 27.2 . Above a certain temperature (T 

> TC) and  in the absence of the magnetic field  B , the spins are randomly oriented, a phase 

transition will be paramagnetic state, leading to decreasing the susceptibility and 
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(T =TC) where there will be a phase transition, the magnetization decreases causing the 
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magnetic susceptibility to goes to infinity. At (T < TC) the spins are aligned, hence the 

average magnetization will  increased and the phase transition will be in a ferromagnetic state. 
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