PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model of multipath propagation of ultrasonic pulses in soft tissue using divergent beam tomography method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the model of calculating ultrasound waveform beam emitted inside the circular space of ultrasonic transducer ring array and propagated through a biological medium submerged in water. Each elementary transducer emits a burst signal, which then propagates through a medium and is received by a number of transducers on the opposite side of the ring array. The method allows for calculating runtime and amplitude of ultrasonic bursts while traveling from an emitter to a receiver through a specified soft tissue section geometry, having regard to the refraction and attenuation effects and directivity pattern of transducers. The soft tissue section geometry is constructed using circular shapes with given ultrasound speed and attenuation distribution. The elaborated software creates a set of received waveforms for each transmitting transducer. The presented results produced by the software can be used as a basis for further research on inverse problems in ultrasound waveform tomography.
Rocznik
Strony
art. no. 2019130
Opis fizyczny
Bibliogr. 9 poz., 1 rys., wykr.
Twórcy
  • Faculty of Electronics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Faculty of Electronics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • 1. G. Sandhu, C. Li, O. Roy, S. Schmidt, N. Duric, High-resolution quantitative whole-breast ultrasound: in vivo application using frequency-domain waveform tomography, in [SPIE Medical Imaging], 94190D-94190D, International Society for Optics and Photonics (2015).
  • 2. G. Sandhu, C. Li, O. Roy, E. West, K. Montgomery, M. Boone, N. Duric, Frequencydomain ultrasound waveform tomography breast attenuation imaging, in [SPIE Medical Imaging], 97900C-97900C, International Society for Optics and Photonics (2016).
  • 3. T. Gudra, K. J. Opieliński, The ultrasonic probe for the investigating of internal object structure by ultrasound transmission tomography, Ultrasonics, 44(1-4) (2006) e295 - e302.
  • 4. K. J. Opieliński, P. Pruchnicki, P. Szymanowski, W. K. Szepieniec, H. Szweda, E. Świś, M. Jóźwik, M. Tenderenda, M. Bułkowski, Multimodal ultrasound computer-assisted tomography: An approach to the recognition of breast lesions, Computerized Medical Imaging and Graphics, 65 (2018) 102 - 114.
  • 5. K. Opieliński, Analysis and modelling of ultrasonic pulses in a biological medium, Archives of Acoustics, 33(4) (2008) 13 - 19.
  • 6. H. F. Olson, Acoustical Engineering, D. Van Nostrand Company, New Jersey 1957.
  • 7. A. R. Selfridge, G. S. Kino, B. T. Khuri-Yakub, A theory for the radiation pattern of a narrow-strip acoustic transducer, Appl. Phys. Lett., 37(1) (1980) 35 - 36.
  • 8. A. S. Glassner, An Introduction to Ray Tracing, Academic Press, Palo Alto 1989.
  • 9. J. Obraz, Ultrazvuk v měřicí technice, SNTL, Praha 1984.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e95a695f-f09a-4a3d-91f3-ef557693d732
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.