PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The performance of H2O, R134a, SES36, ethanol, and HFE7100 two-phase closed thermosyphons for varying operating parameters and geometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the influences of different parameters at performance two-phase closed thermosiphon (TPCT) was presented. It has been confirmed that the working fluid, as well as operating parameters and fill ratio, are very important factors in the performance of TPCT. The article shows characteristics of gravitational tube geometries, as well as the technical characteristic of the most important system components, i.e., the evaporator/condenser. The experiment’s plan and the results of it for the two-phase thermosiphon for both evaluated geometries with varying thermal and fluid flow parameters are presented. Experiments were performed for the most perspective working fluids, namely: water, R134a, SES36, ethanol and HFE7100. Obtained research proves the possibility to use TPCT for heat recovery from the industrial waste water.
Rocznik
Strony
3--21
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] BIELIŃSKI H., MIKIELEWICZ J.: Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling. Arch. Thermodyn. 37(2016), 1, 3–16, DOI:10.1515/aoter-2016-0001.
  • [2] NOIE S.H.: Heat transfer characteristics of a two-phase closed thermosyphon. Appl. Therm. Eng. 25(2005), 495–506.
  • [3] REAY D., MCGLEN R., KEW P.: Heat pipes: Theory, design and applications. Butterworth-Heinemann, 2013.
  • [4] CIEŚLIŃSKI J.T.: Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance. Arch. Thermodyn. 37(2016), 2, 23–40, DOI:10.1515/aoter-2016-0011.
  • [5] ANDRZEJCZYK R., MUSZYŃSKI T., KOZAK P.: Modern method of snow and ice remowal from operational surfaces. Mater. Bud. 12(2014), 18–20 (in Polish).
  • [6] ANDRZEJCZYK R., MUSZYŃSKI T., KOZAK P.: Analysis of the effectiveness of waste heat recovery with application of heat pipe. Part I. Structure and operation of the measurement system, design of heat pipe. Gaz, Woda i Tech. Sanit. (2015) 171–174 (in Polish).
  • [7] MUSZYNSKI T., ANDRZEJCZYK R.: Heat transfer characteristics of hybrid microjet - Microchannel cooling module. Appl. Therm. Eng. 93(2016), 1360–1366, DOI:10.1016/j.applthermaleng.2015.08.085.
  • [8] MUSZYNSKI T., ANDRZEJCZYK R.: Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers. Appl. Therm. Eng. 100(2016), 105–113, DOI:10.1016/j.applthermaleng.2016.01.120.
  • [9] JIAO B., QIU L.M., ZHANG X.B., ZHANG Y.: Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon. Appl. Therm. Eng. 28(2008), 1417–1426.
  • [10] KHAZAEE I.: Experimental investigation and comparison of heat transfer coefficient of a two phase closed thermosyphon. Int. J. Energy Environ. 5(2014), 495–505.
  • [11] ELMOSBAHI M.S., DAHMOUNI A.W., KERKENI C., GUIZANI A.A., BEN NASRALLAH S.: An experimental investigation on the gravity assisted solar heat pipe under the climatic conditions of Tunisia. Energy Convers. Manag. 64(2012), 594–605.
  • [12] FADHL B., WROBEL L.C., JOUHARA H.: Numerical modelling of the temperature distribution in a two-phase closed thermosyphon. Appl. Therm. Eng. 60(2013), 122–131.
  • [13] KANNAN M., SENTHIL R., BASKARAN R., DEEPANRAJ B.: An experimental study on heat transport capability of a two phase thermosyphon charged with different working fluids. Am. J. Appl. Sci. 11(2014), 584.
  • [14] JOUHARA H., ROBINSON A.J.: Experimental investigation of small diameter two-phase closed thermosyphons charged with water FC-84, FC-77 and FC-3283. Appl. Therm. Eng. 30(2010), 201–211.
  • [15] ONG K.S., GOH G., TSHAI K.H., CHIN W.M.: Thermal resistance of a thermosyphon filled with R410A operating at low evaporator temperature. Appl. Therm. Eng. 106(2016), 1345–1351, DOI:10.1016/j.applthermaleng.2016.06.080.
  • [16] MACGREGOR R.W., KEW P.A., REAY D.A.: Investigation of low Global Warming Potential working fluids for a closed two-phase thermosyphon. Appl. Therm. Eng. 51(2013), 917–925.
  • [17] ANDRZEJCZYK R., MUSZYNSKI T.: Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness. Arch. Thermodyn. 37(2016), 4, 137–159. DOI:AOT-00010-2016-0032.
  • [18] ANDRZEJCZYK R., MUSZYNSKI T.: Thermodynamic and geometrical characteristics of mixed convection heat transfer in the shell and coil tube heat exchanger with baffles. Appl. Therm. Eng. (2017), DOI:10.1016/j.applthermaleng.2017.04.053.
  • [19] ANDRZEJCZYK R., MUSZYNSKI T., DORAO C.A.: Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5mm diameter channel. Exp. Therm. Fluid Sci. 83(2017), 78–87, DOI:10.1016/j.expthermflusci.2016.12.016.
  • [20] MUSZYNSKI T., ANDRZEJCZYK R., DORAO C.A.: Investigations on mixture preparation on two phase adiabatic pressure drop of R134a during flow in 5mm diameter channel. Arch. Thermodyn. 38(2017), 3, 99-116, DOI:10.1515/aoter-2017-0018.
  • [21] MUSZYNSKI T., KOZIEL S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45–62, DOI:10.1515/aoter-2016-0019.
  • [22] MUSZYNSKI T.: Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems. Appl. Therm. Eng. (2017), DOI:10.1016/j.applthermaleng.2017.01.021.
  • [23] MA H., YIN L., SHEN X., LU W., SUN Y., ZHANG Y., DENG N.: Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery. Appl. Energy. 169(2016), 177–186.
  • [24] MIKIELEWICZ D., ANDRZEJCZYK R., MIKIELEWICZ J.: Pressure Drop of HFE7000 and HFE7100 in Flow Condensation in Minichannels with Account of Non-Adiabatic Effects. In: MATEC Web Conf., EDP Sciences, 2014, 1007.
  • [25] MIKIELEWICZ D., ANDRZEJCZYK R., JAKUBOWSKA B., MIKIELEWICZ J.: Analytical model with nonadiabatic effects for pressure drop and heat transfer during boiling and condensation flows in conventional channels and minichannels. Heat Transf. Eng. 37(2016), 1158–1171.
  • [26] ANDRZEJCZYK R., MUSZYŃSKI T.: Analysis of the efectiveness of waste heat recovery. Part 2. Experimental investigations. Gaz, Woda I Tech. Sanit. (2016) (in Polish).
  • [27] TEKE I., AĞRA Ö., ATAYILMAZ T.Ö., DEMIR H.: Determining the best type of heat exchangers for heat recovery. Appl. Therm. Eng. 30(2010), 577–583.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e955bc50-ef61-42ba-9ac8-0eff5646439a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.