Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Zastosowanie powłok silanowych w ochronie metali przed korozją
Języki publikacji
Abstrakty
Silanes are one the most attractive materials among the possible alternatives to replace the toxic conventional Cr6+ base pretreatment technologies for corrosion protection of metals. Important advantages of silanes are competitive price, environmental friendliness and compatibility with wide range of inorganic and organic interfaces. In this paper the current status and perspectives in study of organofunctional silane films for the corrosion prevention and protection of metals have been presented.
Silany są jednymi z najbardziej atrakcyjnych materiałów spośród możliwych alternatyw, zastępujących toksyczne tradycyjne technologie obróbki wstępnej na bazie Cr6+ w celu ochrony metali przed korozją. Ważnymi zaletami silanów są konkurencyjne ceny, przyjazność dla środowiska oraz kompatybilność z szerokim spektrum interfejsów nieorganicznych i organicznych. W pracy przedstawiono aktualny stan i perspektywy w badaniach powłok silanów organofunkcyjnych stosowanych w zapobieganiu korozji i ochronie metali.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
376--379
Opis fizyczny
Bibliogr. 79 poz., rys.
Twórcy
autor
- Division of Chemistry, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej Ave. 19, 42-200 Czestochowa, Poland
Bibliografia
- [1] Abel M. L., R. D. Allington, S. J. Shaw, J. F. Watts. 2006. “Understanding the relationship between silane application conditions, bond durability and locus of failure”. Int. J. Adhes. Adhes. 26 : 2–15.
- [2] Abel M. L., J. F. Watts, R. P. Digby. 2004. “The influence of process parameters on the interfacial chemistry of γ-GPS on aluminium: A review”. J. Adhesion 80 : 291–312.
- [3] Aramaki K. 2002. “Self-healing mechanism of an organosiloxane polymer film containing sodium silicate and cerium (III) nitrate for corrosion of scratched zinc surface in 0.5 M NaCl”. Corros. Sci. 44 : 1621–1632.
- [4] Asadi M., R. Naderi, M. Saremi, S.Y. Arman, M. Fedel, F. Deflorian. 2014. “Study of Corrosion Protection of Mild Steel by Eco-Friendly Silane Sol-Gel Coating”. J. Sol-Gel. Sci. Technol. 70 : 329–338.
- [5] Brochier Salon M. C., P.A. Bayle, M. N. Belgacem. 2008. “Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy”. Colloids, Surf A: Physicochem. Eng. Asp. 312 : 83–91.
- [6] Cabral A. M., R. G. Duarte. 2005. ”A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions: Composition of the films formed”. Prog. Org. Coat. 54 : 322–331.
- [7] Cabral A. M., W. Trabelsi, R. Serra, M.F. Montemor, M .L. Zheludkevich, M.G.S. Ferreira. 2006. “The corrosion resistance of hot dip galvanized steel and AA2024-T3 pre-treated with bis-[triethoxysilylpropyl] tetrasulfide solutions doped with Ce(NO3)3”. Corros. Sci. 48 : 3740–3758.
- [8] Cecchetto L., A. Denoyelle, D. Delabouglise, J.P. Petit. 2008. “A silane pretreatment for improving corrosion resistance performances of emeraldine base-coated aluminium samples in neutral environment”. Appl. Surf. Sci. 254 : 1736–1743.
- [9] Chakraborty Banerjee P., R. K. Singh Raman. 2011. “Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41”. Electrochim. Acta 56 : 3790–3798.
- [10] Chaudhury M. K., T. M. Gentle, E. P. Plueddemann. 2012. “Adhesion mechanism of polyvinyl chloride to silane primed metal surfaces”. J. Adhes. Sci.Technol. 4 : 29–38.
- [11] Chen M.-A., X.-B. Lu, Z.-H. Guo, R. Huang. 2011. “Influence of hydrolysis time on the structure and corrosion protective performance of (3-Mercaptopropyl) triethoxysilane film on copper”. Corros. Sci. 53 : 2793–2802.
- [12] Chengdong C., D. Shigang, H. Ruiqing, H. Juan, J. Pingli, Y. Chenqing, D. Ronggui, L. Changjian. 2017. “Insight into the anti-corrosion performance of electrodeposited silane/nano-CeO2 film on carbon steel”. Sur. Coat. Tech. 326 : 183–191.
- [13] Chico B., J. C. Galvan, D. de la Fuente, M. Morcillo. 2007. “Electrochemical impedance spectroscopy study of the effect of curing time on the early barrier properties of silane systems applied on steel substrates”. Prog. Org. Coat. 60 : 45–53.
- [14] Chico B., D. de la Fuente, M. L. Pe´rez, M. Morcillo. 2012. “Corrosion Resistance of Steel Treated with Different Silane/Paint Systems”. J. Coat. Technol. Res. 9 : 3–13N.
- [15] Correa P. S., C. F. Malfatti, D.S. Azambuja. 2011. “Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions”. Prog. Org. Coat., 72 : 739–747.
- [16] Correa-Borroel Al., S. Gutierrez, E. Arce, R. Cabrera-Sierra, P. Herrasti. 2009. “Organosilanes and polypyrrole as anticorrosive treatment of aluminium 2024”, Appl. Electrochem. 39 : 2385–2395.
- [17] De Graeve I., E. Tourwe, M. Biesemans, R. Willem, H. Terryn. 2008. “Silane solution stability and film morphology of water-based bis-1,2-(triethoxysilyl) ethane for thin-film deposition on aluminium”. Prog. Org. Coat. 63 : 38–42.
- [18] De Graeve I., J. Vereecken, A. Franquet, T. Van Schaftinghen, H. Terryn. 2007. “Silane coating of metal substrates: Complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties”. Prog. Org. Coat. 59 : 224–229.
- [19] Deflorian F., S. Rossi, M. Fedel, C. Motte. 2010. “Electrochemical investigation of high-performance silane sol-gel films containing clay nanoparticles”. Prog. Org. Coat. 69 : 158–166.
- [20] Deflorian F., S. Rossi, L. Fedrizzi, M. Fedel. 2008. “Integrated electrochemical approach for the investigation of silane pre-treatments for painting copper”. Prog. Org. Coat., 63 : 338–344.
- [21] Deflorian F., S. Rossi, L. Fedrizzi. 2006. “Silane pre-treatments on copper and aluminium”. Electrochim. Acta. 51 : 6097–6103.
- [22] Fedel M., M. Olivier, M. Poelman, F. Deflorian, S. Rossi, M.E. Druart. 2009. ”Corrosion protection properties of silane pre-treated powder coated galvanized steel”, Prog. Org. Coat. 66 : 118–128.
- [23] Ferreira M.G.S., R.G. Duarte, M.F. Montemor, A.M.P. Simőes. 2004. “Silanes and rare earth salts as chromate replacers for pre-treatments on galvanized steel”. Electrochim. Acta. 49 : 2927–2935.
- [24] Flamini D.O., S.B. Saidman. 2009. ”Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole”. Mat. Sci. Eng. C 44 : 317–325.
- [25] Franquet A., C. Le Pen, H. Terryn, J. Vereckeen. 2003. “Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium”. Electrochim. Acta. 48 : 1245–1255.
- [26] Franquet A., H. Terryn, P. Bertrand, J. Vereckeen. 2002. “Use of optical methods to characterize thin silane films coated on aluminium”. Surf. Interf. Anal. 34 : 25–29.
- [27] Franquet A., H. Terryn, J. Vereecken. 2003. ”IRSE study on effect of thermal curing on the chemistry and thickness of organosilane films coated on aluminium”. Appl. Surf. Sci. 211 : 259–269.
- [28] Frignani A., F. Zucchi, G. Trabanelli, V. Grassi. 2006. ”Protective action towards aluminium corrosion by silanes with a long aliphatic chain”. Corros. Sci. 48 : 2258–2273.
- [29] Gang K., L.U. Jintang, W.U. Haijiang. 2009. ”Post treatment of silane and cerium salt as chromate replacers on galvanized steel”. J. Rare Earths. 27: 164–168.
- [30] Gharagozlou M., R. Naderi, Z. Baradaran. 2016. „Effect of synthesized NiFe2O4-silica nanocomposite on the performance of an ecofriendly silane sol-gel coating”. Prog. Org. Coat. 90 : 407–413.
- [31] Guoli L., X. Wang, A. Li, W. Wang, L. Zheng. 2007. “Fabrication and adhesive properties of thin organosilane films coated on low carbon steel substrates”. Surf. Coat.Technol. 201 : 9571–9578.
- [32] Hosseini S., A. Jafari, E. Jamalizadeh. 2009. „Self-healing corrosion protection by nanostructure sol–gel impregnated with propargyl alcohol”. Electrochim. Acta 54 : 7207–7213.
- [33] Hu J. M., L. Liu, J. Q. Zhang, C. N. Cao. 2006. “Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminum alloy”. Electrochim. Acta. 51 : 3944–3949.
- [34] Hu J. M., L. Liang, J.Q. Zhang, C.N. Cao. 2007. ”Electrodeposition of silane films on aluminum alloys for corrosion protection”. Prog. Org. Coat. 58 : 265–271.
- [35] Jiang H., Z. Zheng, X. Wang. 2008. “Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents”. Vib. Spectrosc. 46 : 1–7.
- [36] Jothi K.J., K. Palanivelu. 2013. „Synergistic effect of silane modified nanocomposites for active corrosion protection”. Ceram. Int. 39 : 7619–7625.
- [37] Kozhukharov S. et al. 2011. “Protective abilities of nanocomposite coatings containing Al2O3nano-particles loaded by CeCl3”. Prog. Org. Coat. 71 : 198–205.
- [38] Li M., Y. Yang, L. Liu, J. Hu, J. Zhang. 2010. “Electro-assisted preparation of dodecyltrimethoxysilane/TiO2 composite films for corrosion protection of AA2024-T3 (aluminum alloy)”. Electrochim. Acta 55 : 3008–3014.
- [39] Liu L., J. Hu, J. Zhang, C.-N. Cao. 2006. “Improving the formation and protective properties of silane films by the combined use of electrodeposition and nanoparticles incorporation”. Electrochim. Acta 52 : 538–545.
- [40] Liu L., J. M. Hu, J.Q. Zhang, C. N. Cao. 2010. “Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection”. Surf. Coat. Technol. 204 : 3920–3926.
- [41] Mekhalif F., D. Cossement, L. Hevesi, J. Delhalle. 2008. ”Electropolymerization of pyrrole on silanized polycrystalline titanium substrates”. Appl. Surf. Sci. 254: 4056–4062.
- [42] Mittal K. L. 2009. Silanes and other coupling agents. Vol. 5. VSP. Boston: Leiden.
- [43] Montemor M. F., A.M. Cabral, M. L. Zheludkevich. 2006. “The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica”. Surf. Coat. Technol. 200 : 2875–2885.
- [44] Montemor M. F., M. G. S. Ferreira. 2007. “Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanised steel substrates”. Electrochim. Acta 52 : 6976–6987.
- [45] Montemor M. F., M. G. S. Ferreira. 2008. “Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates”. Prog. Org. Coat. 63 : 330–337.
- [46] Montemor M. F., R. Pinto, M. G. S. Ferreira. 2009. “Chemical composition and corrosionprotection of silane films modified with CeO2 nanoparticles”. Electrochim. Acta 54 : 5179–5189.
- [47] Montemor M. F., A. Rosqvist, H. Fagerholm, M.G.S. Ferreira. 2004. “The early corrosion behaviour of hot dip galvanised steel pre-treated with bis-1,2- (triethoxysilyl)ethane”. Prog. Org. Coat. 51 : 188–194.
- [48] Montemor M.. F., W. Trabelsi, S. V. Lamaka, K. A. Yasakau, M .L. Zheludkevich, A. C. Bastosc, M.G.S. Ferreira. 2008. “The synergistic combination of bis-silane and CeO2・ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions”. Electrochim. Acta 53 : 5913–5922.
- [49] Montemor M. F., W. Trabelsi, M. L. Zheludkevich, M. G. S. Ferreira. 2006. “Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates”. Prog. Org. Coat. 57 : 67–77.
- [50] Owczarek E. 2016. ”Evaluation of protective properties of silane coatings modified with rhodanine”, Ochrona przed Korozją 59 (9) : 334–336.
- [51] Owczarek E., L. Adamczyk. 2016. ”Electrochemical and anticorrosion properties of bilayer polyrhodanine/isobutyltriethoxysilane coatings”. J. Appl. Electrochem. 46 : 635–643.
- [52] Palanivel V., Y. Huang, W.J. Van Ooij. 2005. “Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5 M NaCl solution”. Prog. Org. Coat. 53 : 153–168.
- [53] Palanivel V., D. Zhu, W.J. van Ooij. 2003. “Nanoparticle-filled silane films as chromate replacements for aluminum alloys”. Prog. Org.Coat. 47 : 384–392.
- [54] Palomino L. M., et al. 2008. “Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3”. Corros. Sci. 50 : 1258–1266.
- [55] Palomino L. M., P. Suegama, I. Aoki, M. Montemor, H. De Melo. 2009. “Electrochemical study of modified cerium–silane bi-layer on Al alloy 2024-T3”. Corros. Sci. 51 : 1238–1250.
- [56] Parkhill R. L., E. T. Knobbe, M.S. Donley. 2001. “Application and evaluation of environmentally compliant spray-coated ormosil films as corrosion resistant treatments for aluminum 2024-T3”. Prog. Org. Coat. 41 : 261–265.
- [57] Plueddemann E. P. 1991. Silane Coupling Agents. New York: Plenum Press
- [58] Poovarasi Balana R. K. at al. 2005. “Effectiveness of lanthanum triflate activated silica nanoparticles as fillers in silane films for corrosion protection of low carbon steel”. Prog. Org. Coat. 90 : 222–234.
- [59] Sere' P. R., C. Deya´, W. A. Egli, C. I. Elsner, A. R. Di Sarli. 2014. “Protection of Galvanized Steel with Silanes: Its Comparison with Chromium(VI)”. J. Mater. Eng. Perform. 23 : 342–348.
- [60] Suegama P. H., H. G. de Melo, A. A. C. Recco, A. P. Tschiptschin, I. V. Aoki. 2008. “Corrosion behavior of carbon steel protected with single and bi-layer of silane films filled with silica nanoparticles”. Surf. Coat. Technol. 202 : 2850–2858.
- [61] Suegama P. H., A. A .C. Recco, A. P. Tschiptschin, I. V. Aoki. 2007. “Influence of silica nanoparticles added to an organosilane film on carbon steel electrochemical and tribological behavior”. Prog. Org. Coat. 60 : 90–98.
- [62] Torry S. A., A. Campbell, A. V. Cunliffe, D. A. Tod. 2006. “Kinetic analysis of organosilane hydrolysis and condensation”. Int. J. Adhes. Adhes. 26 : 40–49.
- [63] Trabelsi W., P. Cecilio, M. G. S. Ferreira, M. F. Montemor. 2005. “Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates”. Prog. Org. Coat. 54 : 276–284.
- [64] Trabelsi W., P. Cecilio, M. G. S. Ferreira, K. Yasakau, M. L. Zheludkevich, M.F. Montemor. 2007. “Surface evaluation and electrochemical behaviour of doped silane pre-treatments on galvanized steel substrates”. Prog. Org. Coat. 59 : 214–223.
- [65] Trabelsi W., L. Dhouibi, E. Triki, M. G. S. Ferreira, M. L. Zheludkevich, M. F. Montemor. 2006. “The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanized steel substrates”. Surf. Coat. Technol. 200 : 4240–4250.
- [66] Tsai M., Y. D. Lee, K.N. Chen. 2002. “NMR spectroscopic studies of dimethyldiethoxy silane hydrolysis and polysiloxane conversion”. J. Appl. Polym. Sci. 86 : 468–477.
- [67] Van Ooij W. J., D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi, P. Puomi. 2005. “Corrosion protection properties of or
- [68] Van Schaftingen T., C. Le Pen, H. Terryn, F. Horzenberger. 2004. ”Investigation of the barrier properties of silanes on cold rolled steel”, Electrochim. Acta, 49 : 2997–3004.
- [69] Wu L., L. Liu, J. Li, J. Hu, J. Zhang, C. Cao. 2010. “Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl] tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection”. Surf. Coat. Technol.204 : 3920–3926.
- [70] Zaharescu M., L. Predoana, A. Barau, D. Raps, F. Gammel, N. C. Rosero-Navarro, Y. Castro, A. Duran, M. Aparicio. 2009. “SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys”. Corros. Sci. 51 : 1998–2005.
- [71] Zand R. Z., K. Verbeken, A. Adriaens. 2006. “Evaluation of the corrosion inhibition performance of silane coatings filled with cerium salt-activated nanoparticles on hot-dip galvanized steel substrates”. Int. J. Electrochem. Soc. 8 : 4924–4940.
- [72] Zand R. Z., K. Verbeken, A. Adriaens. 2012. “Electrochemical assessment of the self-healing properties of cerium doped sol-gel coatings on 304L stainless steel substrates”. Int. J. Electrochem. Sci. 7 : 9592–9608.
- [73] Zand R. Z., K. Verbeken, V. Flexer, A. Adriaens. 2014. “Effects of ceria nanoparticle concentrations on the morphology and corrosion resistance of cerium–silane hybrid coatings on electro-galvanized steel substrates”. Mat. Chem. Phys. 145 : 450–460.
- [74] Zanotto F., V. Grassi, A. Frignani, F. Zucchi. 2011. “Protection of the AZ31 magnesium alloy with cerium modified silane coatings”. Mater. Chem. Phys. 129 : 1–8.
- [75] Zheludkevich M. et al. 2005. “Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance”. Electrochim. Acta 51 : 208–217.
- [76] Zheludkevich M. L., et al. 2006. “Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3”. Surf. Coat. Technol. 200 : 3084–3094.
- [77] Zhu D., W. J. van Ooij. 2004. “Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane”. Prog. Org. Coat. 49 : 42–53.
- [78] Zucch F., V. Grassi, A. Frignani, C. Monticelli, G. Trabanelli. 2006. “Influence of a silane reatment on the corrosion resistance of a WE43 magnesium alloy”. Surf. Coat. Technol. 200 : 4136–4143.
- [79] Zucchi F., A. Frignani, V. Grassi, A. Balbo, G. Trabanelli. 2008. ”Organo-silane coatings for AZ31 magnesium alloy corrosion protection”. Mat. Chem. Phys. 110 : 263–268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e95489e1-8a61-4afe-bfb2-5442e875dca6