PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low velocity perforation of thick magnesium alloy AM60 plates impacted by rigid conical‑nose impactor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The impact resistance behaviour of the plate made of the AM60 magnesium alloy at the low velocity impact perforation mode is here investigated at room temperature using a numerical approach based on experimental results. Dynamic tests were performed using an impact digital tower on the 10.0 mm thick AM60 magnesium alloy plates using cylindrical impactors with conical-nose shapes of a nominal diameter of 12.0 mm, and a nominal mass of 5.77 kg. The plates were impacted with velocities ranging from 7 to 16 m/s. During the experiments, the failure of the target plates was evaluated. Finite element (FE) model was validated using experimental results. FE simulations of the conducted experiments were performed with ABAQUS software. In simulations the strain rate dependent Johnson-Cook yield criterion with a strain hardening law was accompanied with either the ductile fracture criterion or stress triaxiality-dependent JC fracture criterion to describe the target material properties. The stress and strain distributions for different impactor velocity considered were calculated using initial impact velocity data obtained from the experiments. A range of parameters, like element size, the fracture initiation strain, friction coefficient, etc. which play an important role in the simulation, were studied. The results of numerical simulation were compared with those from the experiment obtained. A good agreement between them was achieved. The failure process of AM60 target-plate revealed that in the case of the conical-nose impactor, the ductile hole enlargement occurs during the initial stage of the impact, and subsequently, a through-thickness fracture develops causing its shear plugging failure.
Rocznik
Strony
art. no. e5, 2023
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Department of Theory of Continuous Media and Nanostructures, Institute of Fundamental Technological Research, Polish Academy of Sciences, A. Pawińskiego 5B, 02‑106 Warsaw, Poland
  • Department of Experimental Mechanics, Institute of Fundamental Technological Research, Polish Academy of Sciences, A. Pawińskiego 5B, 02‑106 Warsaw, Poland
  • Vehicle Type‑Approval & Testing Department, Motor Transport Institute, Jagiellońska 80, 03‑301 Warsaw, Poland
Bibliografia
  • 1. Arias A, Rodríguez-Martínez JA, Rusinek A. Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles. Eng Fract Mech. 2008;75:1635-56.
  • 2. Iqbal MA, Gupta G, Diwakar A, et al. Effect of projectile nose shape on the ballistic resistance of ductile targets. Eur J Mech A/Solids. 2010;29:683-94.
  • 3. Dey S, Borvik T, Hopperstad OS, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes. Int J Impact Eng. 2004;30(8-9):1005-38.
  • 4. Kane A, Borvik T, Hopperstad OS, et al. Finite element analysis of plugging failure in steel plates struck by blunt projectiles. J Appl Mech. 2009;76:051302-1-11.
  • 5. Mohr D, Marcadet SJ. Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int J Solids Struct. 2015;68:40-55.
  • 6. Kula A, Tokarski T, Niewczas M. Comparative studies on the structure and properties of rapidly solidified and conventionally cast AM60 magnesium alloys. Mater Sci Eng A. 2019;759:346-56.
  • 7. Prasad KE, Li B, Dixit N, et al. The dynamic flow and failure behavior of magnesium and magnesium alloys. JOM. 2014;66(2):291-304.
  • 8. Kondori B, Mahmudi R. Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy. Mater Sci Eng A. 2010;527:2014-21.
  • 9. Magliaro J, Altenhof W. Energy absorption mechanisms and capabilities for magnesium extrusions under impact. Int J Mech Sci. 2020;179: 105667.
  • 10. Malik A, Wang Y, Huanwu C, et al. Dynamic mechanical behavior of magnesium alloys: a review. Int J Mater Res. 2019;110(12):1105-15.
  • 11. Wang M, Lu L, Li C, et al. Deformation and spallation of a magnesium alloy under high strain rate loading. Mater Sci Eng A. 2016;661:126-35.
  • 12. Li Q. Dynamic compressive mechanical behavior of magnesium-based materials: magnesium single crystal, polycrystalline magnesium, and magnesium alloy Handbook of mechanics of materials. Singapore: Springer; 2019. p. 845-72.
  • 13. Wierzbicki T. Petalling of plates under explosive and impact loading. Int J Impact Eng. 1999;22:935-54.
  • 14. Rusinek A, Rodríguez-Martínez JA, Zaera R, et al. Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles. Int J Impact Eng. 2009;36:565-87.
  • 15. Simulia ABAQUS/Explicit User’s Manual Version 6.16 Edition. Dassault Systems, Providence. 2016.
  • 16. Szymczak T, Makowska K, Kowalewski ZL, et al. An influence of impact energy on magnesium alloy behaviour. Int J Mech Mater Des. 2020;16:139-53.
  • 17. Recht RF, Ipson TW. Ballistic perforation dynamics. J Appl Mech. 1963;30(3):384-90.
  • 18. Lambert JP, Jonas GH. Towards standardization in terminal ballistics testing: velocity representation. Aberdeen Proving Grounds, MD: BRL-R-1852 U.S. Army Ballistics Research Laboratory, USA; 1976.
  • 19. Rodríguez-Martínez JA, Pesci R, Rusinek A, et al. Thermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles at different temperatures. Int J Solids Struct. 2010;47:1268-84.
  • 20. Rodríguez-Martínez JA, Rusinek A, Pesci R. Experimental survey on the behaviour of AISI 304 steel sheets subjected to perforation. Thin-Wall Struct. 2010;48:966-78.
  • 21. Rosenberg Z, Vayig Y. On the friction effect in the perforation of metallic plates by rigid projectiles. Int J lmpact Eng. 2021;149: 103794.
  • 22. Sannes S, Gjestland H, Westengen H, et al. Die casting of magnesium alloys-the importance of controlling die filling and solidification. SAE Trans. 2003;112:1-9.
  • 23. Song WQ, Beggs P, Easton M. Compressive strain-rate sensitivity of magnesium-aluminum die casting alloys. Mater Des. 2009;30(3):642-8.
  • 24. Dudamell NV, Galvez F, Perez-Prado MT. Dynamic deformation of high pressure die-cast magnesium alloys. Rev Metal. 2012;48(5):351-7.
  • 25. Gu G, Lin S, Meng Y, et al. Influence of strain rate and stress state on the mechanical behavior of die-casting AM60 magnesium alloy. Proc ASME Int Mech Eng Congress Expos. 2011;8(11):425-33.
  • 26. Gu G, Lin S, Xia Y, et al. Experimental study on influence of section thickness on mechanical behavior of die-cast AM60 magnesium alloy. Mater Des. 2012;38:124-32.
  • 27. Aune TK, Albright D, Westengen H, et al. Behavior of die cast magnesium alloys subject to rapid deformation. SAE Trans. 2000;109:555-9.
  • 28. Dorum C, Hopperstad OS, Langseth M, et al. Energy absorption capacity for hpdc components. SAE Trans. 2004;113:1-6.
  • 29. Kraehling D. Effect of stress triaxiality on constitutive response and failure of super vacuum die cast AM60B magnesium alloy. Master of Applied Science thesis, Mechanical Engineering Waterloo University, Ontario, Canada; 2014.
  • 30. Weiler JP, Wood JT, Klassen RJ, et al. Relationship between internal porosity and fracture strength of die-cast magnesium AM60B alloy. Mater Sci Eng A. 2005;395:315-22.
  • 31. Hebben R. The material and its properties. magnesium diecasting. STIHL folder pp 1-4; 2010. https://magnesium.stihl.com/p/media/download/d4/material_and_properties.pdf.
  • 32. Yan C, Bai RX, Gu YT, et al. Investigation on mechanical behaviour of AM60 magnesium alloys. J Achiev Mater Manuf Eng. 2008;31(2):398-401.
  • 33. Buch A. Asm specialty handbook-magnesium and magnesium alloys. Metals Park: ASM International; 1999. p. 22-49.
  • 34. Lubliner J. Plasticity theory. New York: Springer; 1990.
  • 35. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21(1):31-48.
  • 36. Cao J, Lin J. A study on formulation of objective functions for determining material models. Int J Mech Sci. 2008;50(2):193-204.
  • 37. Yao D, Duan Y, Li M, et al. Hybrid identification method of coupled viscoplastic-damage constitutive parameters based on BP neural network and genetic algorithm. Eng Fract Mech. 2021;257: 108027.
  • 38. Jia Y, Bai Y. Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. Int J Mech Sci. 2016;115-116:516-31.
  • 39. Lou Y, Chen L, Clausmeyer T, et al. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int J Solids Struct. 2017;112:169-84.
  • 40. Teng X, Wierzbicki T. Evaluation of six fracture models in high velocity perforation. Eng Fract Mech. 2006;73(12):1653-78.
  • 41. Torki M, Keralavarma S, Benzerga A. An analysis of Lode effects in ductile failure. J Mech Phys Solids. 2021;153: 104468.
  • 42. Perzyna P. Thermodynamic theory of viscoplasticity. Adv Appl Mech. 1971;11:313-54.
  • 43. Simó JC, Hughes TJR. Computational inelasticity. NewYork: Springer; 1998.
  • 44. Voyiadjis GZ, Abed FH. Transient localizations in metals using microstructure based yield surfaces. Model Simul Mater Sci Eng. 2006;15(1):S83.
  • 45. Backman ME, Goldsmith W. The mechanics of penetration of projectiles into targets. Int J Eng Sci. 1978;16(1):1-99.
  • 46. Feldgun VR, Yankelevsky DZ, Karinski YS. Cavitation phenomenon in penetration of rigid projectiles into elastic-plastic targets. Int J lmpact Eng. 2021;151: 103837.
  • 47. Masri R. Low-velocity penetration of a rigid, hemispherical nose projectile in incompressible, elastoplastic, strain-hardening mises media. Int J Solids Struct. 2019;167:14-23.
  • 48. Rosenberg Z, Dekel E. Revisiting the perforation of ductile plates by sharp-nosed rigid projectiles. Int J Solids Struct. 2010;47:3022-33.
  • 49. Ryan S, Nguyen LH, Gallary D, et al. A scaling law for predicting the ballistic performance of aluminum alloy targets perforated in ductile hole formation. Int J lmpact Eng. 2018;116:34-50.
  • 50. Rosenberg Z, Dekel E. On the deep penetration and plate perforation by rigid projectiles. Int J Solids Struct. 2009;46:4169-80.
  • 51. Wang Y, Chen X, Xiao X, et al. Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes. Int J lmpact Eng. 2020;139: 103498.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9473513-782c-4e76-b680-b4ef7df3c4c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.