Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
Abstrakty
In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier based fuzzy rough sets (FQFRS), an intuitive generalization of fuzzy rough sets. We show how several existing models fit in this generalization as well as how it inspires novel models that may improve these existing models. In addition, we introduce several new binary quantification models. Finally, we introduce an adaptation of FQFRS that allows seamless integration of outlier detection algorithms to enhance the robustness of the applications based on FQFRS.
Rocznik
Tom
Strony
269--278
Opis fizyczny
Bibliogr. 29 poz.,wz.
Twórcy
autor
- Ghent University, Ghent, Belgium Computational Web Intelligence Dept. of Applied Mathematics, Computer Science and Statistics
autor
- Ghent University, Ghent, Belgium Computational Web Intelligence Dept. of Applied Mathematics, Computer Science and Statistics
Bibliografia
- 1. L. A. Zadeh, “A computational approach to fuzzy quantifiers in natural languages,” in Computational linguistics. Elsevier, 1983, pp. 149–184.
- 2. R. R. Yager, “Quantifier guided aggregation using owa operators,” International Journal of Intelligent Systems, vol. 11, no. 1, pp. 49–73, 1996.
- 3. I. Glöckner, Fuzzy quantifiers: a computational theory. Springer, 2008, vol. 193.
- 4. Z. Pawlak, “Rough sets,” International journal of computer & information sciences, vol. 11, no. 5, pp. 341–356, 1982.
- 5. D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets,” International Journal of General System, vol. 17, no. 2-3, pp. 191–209, 1990.
- 6. S. Vluymans, L. D’eer, Y. Saeys, and C. Cornelis, “Applications of fuzzy rough set theory in machine learning: a survey,” Fundamenta Informaticae, vol. 142, no. 1-4, pp. 53–86, 2015.
- 7. C. Cornelis, M. De Cock, and A. M. Radzikowska, “Vaguely quantified rough sets,” in International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. Springer, 2007, pp. 87–94.
- 8. J. Fernández Salido and S. Murakami, “On β-precision aggregation,” Fuzzy Sets and Systems, vol. 139, no. 3, pp. 547–558, 2003. https://doi.org/10.1016/S0165-0114(03)00003-4. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0165011403000034
- 9. J. Fernández Salido and S. Murakami, “Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations,” Fuzzy Sets and Systems, vol. 139, no. 3, pp. 635–660, 2003. https://doi.org/10.1016/S0165-0114(03)00124-6. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165011403001246
- 10. A. Mieszkowicz-Rolka and L. Rolka, “Variable precision fuzzy rough sets,” in Transactions on Rough Sets I. Springer, 2004, pp. 144–160.
- 11. Y. Yao, J. Mi, and Z. Li, “A novel variable precision (θ, σ)-fuzzy rough set model based on fuzzy granules,” Fuzzy Sets and Systems, vol. 236, pp. 58–72, 2014. https://doi.org/10.1016/j.fss.2013.06.012 Theme: Algebraic Aspects of Fuzzy Sets. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165011413002753
- 12. Q. Hu, S. An, and D. Yu, “Soft fuzzy rough sets for robust feature evaluation and selection,” Information Sciences, vol. 180, no. 22, pp. 4384–4400, 2010. https://doi.org/10.1016/j.ins.2010.07.010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025510003282
- 13. A. Hadrani, K. Guennoun, R. Saadane, and M. Wahbi, “Fuzzy rough sets: Survey and proposal of an enhanced knowledge representation model based on automatic noisy sample detection,” Cognitive Systems Research, vol. 64, pp. 37–56, 2020. https://doi.org/10.1016/j.cogsys.2020.05.001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389041720300255
- 14. S. An, Q. Hu, W. Pedrycz, P. Zhu, and E. C. C. Tsang, “Data-distribution-aware fuzzy rough set model and its application to robust classification,” IEEE Transactions on Cybernetics, vol. 46, no. 12, pp. 3073–3085, 2016. http://dx.doi.org/10.1109/T-CYB.2015.2496425
- 15. S. An, Q. Hu, and C. Wang, “Probability granular distance-based fuzzy rough set model,” Applied Soft Computing, vol. 102, p. 107064, 2021. https://doi.org/10.1016/j.asoc.2020.107064. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1568494620310024
- 16. C. Cornelis, N. Verbiest, and R. Jensen, “Ordered weighted average based fuzzy rough sets,” in International Conference on Rough Sets and Knowledge Technology. Springer, 2010, pp. 78–85.
- 17. A. Theerens, O. U. Lenz, and C. Cornelis, “Choquet-based fuzzy rough sets,” International Journal of Approximate Reasoning, 2022. http://dx.doi.org/10.1016/j.ijar.2022.04.006
- 18. H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek, “Interpreting and unifying outlier scores,” in Proceedings of the 2011 SIAM International Conference on Data Mining. SIAM, 2011, pp. 13–24.
- 19. L. A. Zadeh, “Fuzzy sets,” Information and Control, 1965.
- 20. L. D’eer, N. Verbiest, C. Cornelis, and L. Godo, “A comprehensive study of implicator–conjunctor-based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis,” Fuzzy Sets and Systems, vol. 275, pp. 1–38, 2015.
- 21. R. R. Yager, “On ordered weighted averaging aggregation operators in multicriteria decisionmaking,” IEEE Transactions on systems, Man, and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.
- 22. G. Beliakov, A. Pradera, T. Calvo et al., Aggregation functions: A guide for practitioners. Springer, 2007, vol. 221.
- 23. Z. Wang and G. J. Klir, Generalized measure theory. Springer Science & Business Media, 2010, vol. 25.
- 24. A. Cascallar-Fuentes, A. Ramos-Soto, and A. Bugarín-Diz, “An experimental study on the behaviour of fuzzy quantification models,” in ECAI 2020. IOS Press, 2020, pp. 267–274.
- 25. M. Delgado, M. D. Ruiz, D. Sánchez, and M. A. Vila, “Fuzzy quantification: a state of the art,” Fuzzy Sets and Systems, vol. 242, pp. 1–30, 2014.
- 26. V. Torra, “The weighted owa operator,” International Journal of Intelligent Systems, vol. 12, no. 2, pp. 153–166, 1997.
- 27. V. Torra, “On some relationships between the wowa operator and the Choquet integral,” in Proceedings of the IPMU 1998 Conference, Paris, France. Citeseer, 1998, pp. 818–824.
- 28. F. Diaz-Hermida, D. Losada, A. Bugarin, and S. Barro, “A probabilistic quantifier fuzzification mechanism: The model and its evaluation for information retrieval,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 5, pp. 688–700, 2005. http://dx.doi.org/10.1109/T-FUZZ.2005.856557
- 29. O. U. Lenz, D. Peralta, and C. Cornelis, “Scalable approximate frnn-owa classification,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp. 929–938, 2019. http://dx.doi.org/10.1109/T-FUZZ.2019.2949769
Uwagi
1. The research reported in this paper was conducted with the financial support of the Odysseus programme of the Research Foundation – Flanders (FWO). The grant number is G0H9118N.
2. Track 5: 4th International Symposium on Rough Sets: Theory and Applications
3. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9421469-8b36-4821-9194-e3408e3b14d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.