PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Temperature Field Effect on Dynamic Stability Response of Three-layered Annular Plates for Different Ratios of Imperfection

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the temperature field effect on the dynamic stability problem of plates with imperfection. The main objective is to conduct numerical investigations which show the relations between the imperfection ratio and plate dynamic response in a thermal environment. The plate is composed of three layers: thin facings and a thicker core. The plate can be loaded mechanically and thermally or only thermally. The facings are mechanically compressed with the forces acting in a plane. The temperature field model is defined by the temperature difference, which occurs between the plate edges. Two plate models are examined as follows: built using the approximation methods – orthogonalization and finite differences – and composed of finite elements. The analytical and numerical solution procedure is the main one, which is the proposal to perform the problem analysis. The plate reaction is described by the obtained values of the critical temperature differences for plates loaded only thermally and by the critical mechanical load sand the corresponding temperature differences for plates loaded mechanically and subjected to the uncoupled temperature field. The effect of the plate imperfection ratio under time-dependent loads is shown by numerous observations and results, which are shown graphically. The importance of the imperfection ratio on the plate’s dynamic stability response in complex loading conditions is studied.
Wydawca
Rocznik
Strony
158--173
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
Bibliografia
  • [1] Chen, Y.R; Chen, L.W.; Wang, C.C. Axisymmetric dynamic instability of rotating polar orthotropic sandwich annular plates with a constrained damping layer. Composite Structures 2006, 73(2), 290-302. doi: 10.1016/j.compstruct.2005.01.039.
  • [2] Wang, H.J.; Chen, L.W. Axisymmetric dynamic stability of rotating sandwich circular plates. Journal of Vibration and Acoustics 2004, 126, 407-415.
  • [3] Ghiasian, S.E.; Bagheri, H.; Sadighi, M.; Eslami, M.R. Thermal buckling of shear deformable temperature dependent circular/ annular FGM plates, International Journal of Mechanical Sciences 2014, 81, 137-148. http://dx.doi.org/10.1016/j. ijmecsci.2014.02.007.
  • [4] Kadam, P.A.; Panda, S. Nonlinear analysis of an imperfect radially graded annular plate with a heated edge. Int. J. Mech. Mater. Des. 2014, 10, 281–304. doi:10.1007/s10999-014- 9249-y.
  • [5] Bagheri, H.; Kiani, Y.; Eslami, M.R. Asymmetric thermo-inertial buckling of annular plates, Acta Mech. 2017, 228, 1493-1509. doi:10.1007/s00707-016-1772-5. doi:10.1007/s00707-016- 1772-5.
  • [6] Bagheri, H.; Kiani, Y.; Eslami, M.R. Asymmetric thermal buckling of annular plates on a partial elastic foundation, Journal of Thermal Stresses 2017, 228 40(8), 1015-1029.
  • [7] Bagheri, H.; Kiani, Y.; Eslami, M.R. Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation, Computers and Mathematics with Applications 2018, 75, 1566-1581.
  • [8] Zhang, J.; Pan, S.; Chen, L. Dynamic thermal buckling and postbuckling of clamped-clamped imperfect functionally graded annular plates, Nonlinear Dyn. 2019, 95, 565-577.
  • [9] Shariyat, M.; Behzad, H.; Shaterzadeh, A.R. 3D thermomechanical buckling analysis of perforated annular sector plates with multiaxial material heterogeneities based on curved B-spline elements. Composite Structures 2018, 188, 89-103. https://doi.org/10.1016/j.compstruct.2017.12.065
  • [10] Alavi, S.H.; Eipakchi, H. Geometry and load effects on transient response of a VFGM annular plate: An analytical approach. Struct. Eng. Mech. 2019, 70(2), 179–197. doi:10.12989/ sem.2019.70.2.179.
  • [11] Pawlus, D. Buckling sensitivity of three-layered annular plates in temperature field on the rate of imperfection. Proceedings of the 8th International Conference on Coupled Instabilities in Metal Structures, Lodz University of Technology, Poland, July 13-15, 2020, cims2020.p.lodz.pl
  • [12] Pawlus, D. Dynamic stability of three-layered annular plates with wavy forms of buckling. Acta Mech. 2011, 216, 123-138. doi: 10.1007/s00707-010-0352-3
  • [13] Pawlus, D. Solution to the problem of axisymmetric and asymmetric dynamic instability of three-layered annular plates. Thin-Walled Structures 2011, 49, 660-668. doi: 10.1016/j. tws.2010.09.013.
  • [14] Pawlus, D. Dynamic stability of three-layered annular plates with viscoelastic core, Scientific Bulletin of the Technical University of Lodz, 1075, Lodz, 2010 (in Polish).
  • [15] Pawlus, D. Dynamic response of three-layered annular plate with imperfections. Studia Geotechnica et Mechanica 2014, vol. XXXVI, no. 4, 2014, 13-25. doi: 10.2478/seg-2014-0032.
  • [16] Pawlus, D. Stability of three-layered annular plate in stationary temperature field, Thin-Walled Structures 2019, 144. https:// doi.org/10.1016/j.tws.2019.106280.
  • [17] Pawlus, D. Dynamic response of three-layered annular plates in time-dependent temperature field, International Journal of Structural Stability and Dynamics 2020, Vol. 20, No. 12. doi: 10.1142/S0219455420501394.
  • [18] Pawlus, D. Dynamic stability of mechanical and thermal loaded three-layered annular plate with viscoelastic core, Vibrations in Physical Systems 2020, Vol. 31, No. 2. https://doi.org/10.2100 8/j.0860-6897.2020.2.23.
  • [19] Wolmir, A.S. Nonlinear dynamics of plates and shells. Science, Moscow 1972. (in Russian).
  • [20] Timoshenko, S.; Goodier, J.N. Theory of Elasticity, Warsaw, Arkady, 1962.
  • [21] Wojciech, S. Numerical solution of the problem of dynamic stability of annular plates. J. Theor. Appl. Mech. 1979, 17(2), 247–262. (in Polish).
  • [22] Hibbit, Karlsson & Sorensen, Inc.: ABAQUS/Standard. User’s manual. 1998.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e94026fa-029a-412e-a14a-e905489187ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.