PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Thermal Stability of Intermetallic Phases Precipitates in Continuous Ingots of AlCu4MgSi Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research concerning to AlCu4MgSi alloy ingots produced using horizontal continuous casting process. The presented research was focused on the precise determination of phase composition of the precipitates formed during the solidification of ingots and the analysis of their thermal stability. In order to assess the morphology of precipitates in the AlCu4MgSi alloy, data obtained by using a computer simulation of thermodynamic phenomena were compiled with results obtained using advanced research techniques, i.e. High-temperature X-ray diffraction (HT-XRD), SEM-EDS, Thermal and derivative analysis (TDA) and Glow discharge optical emission spectroscopy (GD OES). SEM observations and analysis of chemical composition in micro-areas showed that the precipitates are mainly intermetallic θ-Al2Cu and β-Mg2Si phases, and also presence of Al19Fe4MnSi2 intermetallic phase was confirmed by X-ray diffraction studies. Based on the prepared Thermo-Calc simulation data, high-temperature X-ray diffraction measurements were conducted.
Rocznik
Tom
Strony
99--104
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
autor
  • Department of Foundry Engineering, Silesian University of Technology, Gliwice, Poland
autor
  • Department of Foundry Engineering, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Talamantes-Silva, M.A., Rodríguez, A., Talamantes-Silva, J., Valtierra, S. & Colás, R. (2008). Characterization of an Al-Cu cast alloy. Materials Characterization. 59, 1434-1439.
  • [2] Katgerman, L. (2016). Developments in Continuous Casting of Aluminium Alloys. Cast Metals. 4(3), 133-139.
  • [3] Vaithyanathan, V., Wolverton, C. & Chen, L.Q. (2004). Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Materialia. 52(10), 2973-2987.
  • [4] Totten, G.E., MacKenzie, D.S. (ed.) (2003). Handbook of Aluminum volume 1 Physical Metallurgy and Processes. New York: Marcel Dekker Inc.
  • [5] Lachowicz, M.M., Leśniewski, T., Lachowicz, M.B., Jasionowski R. (2012). Processes of tribological, cavitational and corrossional wear of tested aluminium alloys applied in plastic working. Tribologia. 5, 85-95.
  • [6] Gencalp Irizalp, S., Saklakoglu, N. (2014). Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy. Engineering Science and Technology, an International Journal. 17(2) 58-62.
  • [7] Prados, E.F, Sordi, V.L., Ferrante, M. (2013). The effect of Al2Cu precipitates on the microstructural evolution, tensile strength, ductility and work-hardening behaviour of a Al–4 wt.% Cu alloy processed by equal-channel angular pressing, Acta Materialia. 61(1), 115-125
  • [8] Wolverton, C. (2001). Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Materialia. 49(16), 3129-3142.
  • [9] Chang, K., Liu, S., Zhao, D., Du, Y., Zhou, L. & Chen, L. (2011). Thermodynamic description of the Al–Cu–Mg–Mn–Si quinary system and its application to solidification simulation. Thermochimica Acta. 512(1-2), 258-267.
  • [10] Zheng, Y., Xiao, W., Ge, S., Zhao, W., Hanada, S. & Ma, C. (2015). Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al-Si-Cu-Mg alloys. Journal of Alloys and Compounds. 649, 291-296.
  • [11] Nuckowski, P.M. & Wróbel, T. (2018). The influence of variable parameters of horizontal continuous casting on the structure of AlCu4MgSi alloy ingots. Archives of Foundry Engineering. 18(1), 196-202. (DOI: 10.24425/118837).
  • [12] Nuckowski, P.M. & Wróbel, T. (2019). Mechanical properties and fracture analysis of AlCu4MgSi alloy ingots obtained by horizontal continuous casting. Archives of Metallurgy and Materials. 64(1), 113-118. (DOI: 10.24425/amm.2019.126225).
  • [13] Król, M. (2019). Magnesium-Lithium Alloys with TiB and Sr Additions. Journal of Thermal Analysis and Calorimetry. (DOI: 10.1007/s10973-019-08341-2).
  • [14] Kondracki, M., Gawroński, J. & Szajnar, J. (2005). Role of the Intermetallic Phases in Technological Process of Fixture Brasses. Journal of Materials Processing Technology, 162/163. 332-335. DOI: https://doi.org/10.1016/j.jmatprotec. 2005.02.076.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e93fb7c8-6036-4325-b913-14f4242537f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.