PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mezoporowate materiały węglowe jako obiecujące katalizatory utleniającego odwodornienia alkanów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Mesoporous carbon materials as promising catalysts for oxidative dehydrogenation of alkanes
Języki publikacji
PL EN
Abstrakty
PL
Atrakcyjne właściwości, do których zaliczyć można rozwiniętą powierzchnię właściwą, uporządkowany układ szerokich kanałów wewnątrz ziarnowych oraz obecność względnie dużej liczby powierzchniowych grup tlenowych, sprawiają, że mezoporowate materiały węglowe cieszą się ogromnym zainteresowaniem licznych grup badawczych związanych z chemią materiałów oraz katalizą. W pracy przedstawiono krótki przegląd dotyczący możliwości użycia materiałów węglowych o kontrolowanej mezostrukturze jako katalizatorów reakcji utleniającego odwodornienia alkanów.
EN
Peculiar properties, such as a high specific surface area, an ordered arrangement of wide intraparticle pores as well as a relatively high concentration of surface oxygen-containing functional groups, make mesoporous carbons interesting materials for various research groups working in the field of materials chemistry and catalysis. In this work, a short review concerning the possibility of application of carbon materials with controlled mesostructure as catalysts for the oxidative dehydrogenation of alkanes is presented.
Czasopismo
Rocznik
Strony
298--309
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Wydział Chemii, Uniwersytet Jagielloński, Kraków
  • Wydział Chemii, Uniwersytet Jagielloński, Kraków
Bibliografia
  • 1. Moulijn J.A., Makkee M., Van Diepen A.E.: Chemical Process Technology. John Wiley & Sons Ltd 2013, 99.
  • 2. Valencia R.C.: The Future of the Chemical Industry by 2050. Viley-VCH Verlag GmbH & Co. KGaA 2013, 21–27.
  • 3. Brazdil J.F.: Strategies for the selective catalytic oxidation of alkanes. Topics in Catalysis 2006, 38, 4, 289–294.
  • 4. Yoshimura Y., Kijima N., Hayakawa T., Murata K., Suzuki K., Mizukami F., Matano K., Konishi T., Oikawa T., Saito M., Shiojima T., Shiozawa K., Wakui K., Sawada G., Sato K., Matsuo S., Yamaoka N.: Catalytic cracking of naphtha to light olefins. Catalysis Surveys from Japan 2000, 4, 2, 157–167.
  • 5. Cavani F., Trifirò F.: Alternative processes for the production of styrene. Applied Catalysis A: General 1995, 133, 219–239.
  • 6. Totten G.E.: Fluid and Lubricants Handbook: Technology, Properties, Performance and Testing. ASTM International 2003, 190–192.
  • 7. Weissermel K., Arpe H.-J.: Industrial Organic Chemistry. John Wiley & Sons Ltd 2008, 109–112.
  • 8. Schulze J., Homann M.: C4-Hydrocarbons and Derivatives: Resources, Production, Marketing. Springer Science & Business Media, 2012, 71.
  • 9. HYPERLINK http://www.thyssenkrupp-industrial-solutions.com/productssolutions/chemical-industry/gas-technologies/star-process/overview.html; www.thyssenkrupp-industrial-solutions.com, data dostępu 04.03.2016.
  • 10. Hanuza J., Jeżowska-Trzebiatowska B., Oganowski W.: Structure of the active layer and catalytic mechanism of the V2O5/MgO catalysts in the oxidative dehydrogenation of ethylbenzene to styrene. Journal of Molecular Catalysis 1985, 29, 109–143.
  • 11. Shakhnovich G.V., Belomestnykh I.P., Nekrasov N.V., Kostyukovsky M.M., Kipermana S.L.: Kinetics of ethylbenzene oxidative dehydrogenation to styrene over a vanadia/magnesia catalyst. Applied Catalysis 1984, 12, 23–34.
  • 12. Oganowski W., Hanuza J., Kepiński L.: Catalytic properties of Mg3(VO4)2–MgO system in oxidative dehydrogenation of ethylbenzene. Applied Catalysis A: General 1998, 171, 1, 145–154.
  • 13. Raveendran Shiju N., Anilkumar M., Gokhale S.P., Seshagiri Rao B., Satyanarayana C.V.V.: Oxidative dehydrogenation of ethylbenzene using nitrous oxide over vanadia–magnesia catalysts. Catalysis Science&Technology 2011, 1, 1262–1270.
  • 14. Emig G., Hofmann H.: Action of zirconium phosphate as a catalyst for the oxydehydrogenation of ethylbenzene to styrene. Journal of Catalysis 1983, 84, 1, 15–26.
  • 15. Cadus L.E., Arrua L.A., Gorriz O.F., Rivarola J.B.: Action of activated coke as a catalyst: oxydehydrogenation of ethylbenzene to styrene. Industrial&Engineering Chemistry Research 1988, 27, 12, 2241–2246.
  • 16. Pereira M.F.R., Órfão J.J.M., Figueiredo J.L.: Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Applied Catalysis A: General 1999, 184, 1, 153–160.
  • 17. Figueiredo J.L., Pereira M.F.R.: The role of surface chemistry in catalysis with carbons. Catalysis Today 2010, 150, 1–2, 2–7.
  • 18. Vrieland G.E., Menon P.G.: Nature of the catalytically active carbonaceous sites for the oxydehydrogenation of ethylbenzene to styrene. A brief review. Applied Catalysis 1991, 77, 1, 1–8.
  • 19. Serp P., Figueiredo J.L.: Carbon Materials for Catalysis. John Wiley&Sons 2009, 180–186.
  • 20. McNaught A.D., Wilkinson A.: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book” ). Blackwell Scientific Publications 1997.
  • 21. Anastas P.T., Warner J.C.: Green Chemistry: Theory and Practice. Oxford University Press 1998, 30.
  • 22. Alkhazov T.G., Lisovskii A.E., Ismailov Y.A., Kozharov A.I.: Oxidative dehydrogenation of ethylbenzene on activated carbons. I. General characteristics of the process. Kinetics and Catalysis 1978, 19, 3, 611–614.
  • 23. Pereira M.F.R., Órfão J.J.M., Figueiredo J.L.: Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. 2. Kinetic modelling. Applied Catalysis A. General 2001, 196, 1, 43–54.
  • 24. Pereira M.F.R., Órfão J.J.M., Figueiredo J.L.: Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. 3. Catalyst deactivation. Applied Catalysis A: General 2001, 218, 307–318.
  • 25. Zhang J., Su D.S., Zhang A.H., Wang D., Schlögl R., Hébert C.: Nanocarbon as Robust Catalyst: Mechanistic Insight into Carbon-Mediated Catalysis. Angewandte Chemie International Edition 2007, 46, 7319–7323.
  • 26. Keller N., Maksimova N.I., Roddatis V.V., Schur M., Mestl G., Butenko Y.V., Kuznetzov V.L., Schlögl R.: The Catalytic Use of Onion-Like Carbon Materials for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene. Angewandte Chemie International Edition 2002, 41, 11, 1185–1888.
  • 27. Zhang J., Liu X., Blume R., Zhang A., Schlögl R., Su D.S.: Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane. Science 2008, 322, 73–77.
  • 28. Pereira M.F.R., Órfão J.J.M., Figueiredo J.L.: Oxidative dehydrogenation of ethylbenzene on activated carbon fibers. Carbon 2002, 40, 2393–2401.
  • 29. Delgado J.J., Vieira R., Rebmann G., Su D.S., Keller N., Ledous M.J., Shlögl R.: Supported carbon nanofibers for the fixed-bed synthesis of styrene. Carbon 2006, 44, 809–812.
  • 30. Pereira M.F.R., Figueiredo J.L., Órfão J.J.M., Serp P., Kalck P., Kihn Y.: Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon 2004, 42, 2807–2813.
  • 31. Su D.S., Maksimova N., Delgado J.J., Keller N., Mestl G., Ledoux M.J., Schlögl R.: Nanocarbons in selective oxidative dehydrogenation reaction. Catalysis Today 2005, 102–103, 110–114.
  • 32. Kane M.S., Kao L.C., Mariwala R.K., Hilscher D.F., Foley H.C.: Effect of Porosity of Carbogenic Molecular Sieve Catalysts on Ethylbenzene Oxidative Dehydrogenation. Industrial&Engineering Chemistry Research 1996, 35, 3319–3331.
  • 33. Pereira M.F.R., Órfão J.J.M., Figueiredo J.L.: Influence of the textural properties of an activated carbon catalyst on the oxidative dehydrogenation of ethylbenzene. Colloids and Surfaces A. Physicochem. Eng. Aspects 2004, 241, 165–171.
  • 34. Jarczewski S., Drozdek M., Wach A., Dudek B., Kuśtrowski P., Casco M.E., Rodríguez-Reinoso F.: Oxidative Dehydrogenation of Ethylbenzene Over Poly(furfuryl alcohol)-Derived CMK-1 Carbon Replica. Catalysis Letters 2016, DOI 10.1007/s10562–016–1748-z.
  • 35. Rodríguez-Reinoso F.: The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 3, 159–175.
  • 36. Figueiredo J.L., Pereira M.F.R.: The role of surface chemistry in catalysis with carbons. Catalysis Today 2010, 150, 2–7.
  • 37. Hu Z., Srinivasan M.P., Ni Y.: Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials 2000, 12, 1, 62–65.
  • 38. Oya A., Yoshida S., Alcaniz-Monge J., Linares-Solano A.: Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33, 8, 1085–1090.
  • 39. Tamon H., Ishizaka H., Yamamoto Y., Suzuki T.: Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37, 2049–2055.
  • 40. Niebrzydowska P., Janus R., Kuśtrowski P., Jarczewski S., Wach A., Silvestre-Albero A., Rodríguez-Reinoso F.: A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. Carbon 2013, 64, 252–261.
  • 41. Ryoo R., Joo S.H., Jun S.: Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. Journal of Physical Chemistry B 1999, 103, 37, 7743–7746.
  • 42. Liang C., Dai S.: Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of American Chemical Society 2006, 128, 5316–5317.
  • 43. Liang C., Li Z., Dai S.: Mesoporous Carbon Materials: Synthesis and Modification. Angewandte Chemie International Edition 2008, 47, 3696–3717.
  • 44. Niebrzydowska P., Kuśtrowski P.: Adsorbenty i katalizatory. Wydawnictwo Uniwersytet Rzeszowski 2012, 93–109.
  • 45. Liu L., Deng Q.-F., Agula B., Ren T.-Z., Liu Y.-P., Zhaorigetu B., Yuan Z.-Y.: Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catalysis Today 2012, 186, 35–41.
  • 46. Michorczyk P., Kuśtrowski P., Niebrzydowska P., Wach A.: Catalytic performance of sucrose-derived CMK-3 in oxidative dehydrogenation of propane to propene. Applied Catalysis A: General 2012, 445–446, 321–328.
  • 47. Su D.S., Delgado J.J., Liu X., Wang D., Schlögl R., Wang L., Zhang Z., Shan Z., Xiao F-S.: Highly Ordered Mesoporous Carbon as Catalyst for Oxidative Dehydrogenation of Ethylbenzene to Styrene. Chemistry – An Asian Journal 2009, 4, 1108–1113.
  • 48. Schwartz V., Xie H., Meyer III H.M., Overbury S.H., Liang C.: Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon. Carbon 2011, 49, 659–668.
  • 49. Utgenannt S., Hansen F., Klepel O., Jarczewski S., Wach A., Kuśtrowski P.: Control of porosity and composition of carbon based catalystsprepared by template assisted routes. Catalysis Today 2015, 249, 38–44.
  • 50. Walter R., Klepel O., Erler T., Bron M., Niebrzydowska P., Wach A., Kuśtrowski P.: First Steps on the Way to a Modular Concept for the Preparation of Carbon Based Catalysts. Catalysis Letters 2013, 143, 642–650.
  • 51. Janus P., Janus R., Kuśtrowski P., Jarczewski S., Wach A., Solvestre-Albero A.M., Rodríguez-Reinoso F.: Chemically activated poly(furfuryl alcohol)-derived CMK-3 carboncatalysts for the oxidative dehydrogenation of ethylbenzene. Catalysis Today 2014, 235, 201–209.
  • 52. Xie H., Wu Z., Overbury S.H., Liang C., Schwartz V.: Investigation of the selective sites on graphitic carbons for oxidative dehydrogenation of isobutene. Journal of Catalysis 2009, 267, 158–166.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e93b6f48-803d-421b-afe2-ee70b6062d06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.