PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural Evolution of AlCuFeMnTi-0.75Si High Entropy Alloy Processed by Mechanical Alloying and Spark Plasma Sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we have designed a new high entropy alloy containing lightweight elements, e.g., Al, Fe, Mn, Ti, Cu, Si by high energy ball milling and spark plasma sintering. The composition of Si was kept at 0.75 at% in this study. The results showed that the produced AlCuFeMnTiSi0.75 high entropy alloy was BCC structured. The evolution of BCC1 and BCC2 phases was observed with increasing the milling time up to 60 h. The spark plasma sintering treatment of milled compacts from 650-950°C showed the phase separation of BCC into BCC1 and BCC2. The density and strength of these developed high entropy alloys (95-98%, and 1000 HV) improved with milling time and were maximum at 850°C sintering temperature. The current work demonstrated desirable possibilities of Al-Si based high entropy alloys for substitution of traditional cast components at intermediate temperature applications.
Twórcy
autor
  • Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-Ro, Suwon-Si, Gyeonggi 16499, Korea
  • Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-Ro, Suwon-Si, Gyeonggi 16499, Korea
  • Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-Ro, Suwon-Si, Gyeonggi 16499, Korea
autor
  • Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-Ro, Suwon-Si, Gyeonggi 16499, Korea
autor
  • Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-Ro, Suwon-Si, Gyeonggi 16499, Korea
Bibliografia
  • [1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
  • [2] B. S. Murty, J. W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st edn. Butterworth-Heinemann, Oxford 2014.
  • [3] B. Cantor, I. T. H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004).
  • [4] B. Cantor, Entropy 16, 4749 (2014).
  • [5] W. Li, S. Cui, J. Han, C. Xu, Rare Met. 25, 133 (2006).
  • [6] A. Kumar, M. Gupta, Metals 6 (9), 199 (2016)
  • [7] K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, C. C. Koch, Mater. Res. Lett. 3, 95 (2014).
  • [8] K. Tseng, Y. Yang, C. Juan, T. Chin, C. Tsai, J. Yeh, Sci China Technol Sci. 61, 184 (2018).
  • [9] A. Sharma, D. U. Lim, J. P. Jung, Mater. Sci. Technol. 32 (8), 773 (2016).
  • [10] J. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloy. Compd. 760, 15 (2018).
  • [11] J. M. Torralba, P. Alvaredo, A. G. Junceda, Powder Met. 63, 227 (2020).
  • [12] B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, (3rd ed.), New York, Prentice Hall, 2001.
  • [13] M. J. Chae, A. Sharma, M. C. Oh, B. Ahn, Met. Mater. Int. 27, 629 (2021).
  • [14] A. Sharma, M. C. Oh, B. Ahn, Mater. Sci. Eng. A 797, 140066 (2020).
  • [15] J. M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, E.M. Acuña, Sci Rep. 9, 6792 (2019).
  • [16] A. Kumar, P. Dekhne, A. K. Swarnakar, M. Chopkar, Mater. Res. Exp. 6, 026532 (2019).
Uwagi
1. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1005478).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e939f854-9fa8-4c69-b5cb-41668674c3be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.