PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scales of Turbulent Eddies in a Compound Channel

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental research was undertaken to investigate the changes in scales of turbulent eddies (macro- and microeddies) in a compound channel and the influence of rigid, emergent floodplain vegetation on scales of turbulent eddies. The results of eight tests for different roughness conditions (smooth bed, rough bed) and with a tree system on the floodplains from two earlier studies are presented. The increase of the channel roughness resulted in a decrease of longitudinal sizes of macroeddies in the whole channel. Trees on the floodplains resulted in disintegration of the sizes of macroeddies, making values of sizes more uniform. A more significant decreasing influence on sizes of macroeddies in the whole channel was exerted by an increase of the main channel sloping bank roughness, having a higher effect than a twofold decrease in the floodplain trees density. The microeddies’ sizes are larger in the main channel centreline than on the floodplains and the smallest ones were present in the main channel/floodplain interface.
Czasopismo
Rocznik
Strony
514--532
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Warszawa, Poland
Bibliografia
  • [1] Ben Meftah, M., F. De Serio, D. Malcangio, and A.F. Petrillo (2006), Experimental study of flexible and rigid vegetation in an open channel. In: Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2006”, 6-8 September 2006, Lisbon, Portugal, 603-611.
  • [2] Carollo, F.G., V. Ferro, and D. Termini (2005), Analyzing turbulence intensity in gravel bed channels, J. Hydraul. Eng. ASCE 131, 12, 1050-1061, DOI:10.1061/(ASCE)0733-9429(2005)131:12(1050).
  • [3] Czernuszenko, W., and P. Lebiecki (1989), The turbulence in river-flows, Arch. Hydrotech. 36, 1-2, 17-34 (in Polish).
  • [4] Czernuszenko, W., A. Kozioł, and P.M. Rowiński (2007), Measurements of 3D turbulence structure in a compound channel, Arch. Hydro-Eng. Environ. Mech. 54, 1, 55-73.
  • [5] Knight, D.W., and K. Shiono (1990), Turbulence measurements in a shear layer regionn of a compound channel, J. Hydraul. Res. 28, 2, 175-195, DOI:10.1080/00221689009499085.
  • [6] Knight, D.W., and K. Shiono (1996), River channel and floodplain hydraulics. In: M.G. Anderson, D.E. Walling, and P.D. Bates (eds.), Floodplain Processes, Ch. 5, John Wiley and Sons, Chichester, 139-181.
  • [7] Knight, D.W., K.W.H. Yuen, and A.A.I. Alhamid (1994), Boundary shear stress distributions in open channel flow. In: K. Beven, P. Chatwin, and J. Millbank (eds.), Physical Mechanisms of Mixing and Transport in the Environment, John Wiley and Sons, New York, 51-87.
  • [8] Kozioł, A.P. (2000), Longitudinal sizes of the largest eddies in the compound channel, Prz. Nauk. Wydz. Inż. Kształt. Środow. 18, 151-159 (in Polish).
  • [9] Kozioł, A.P. (2008), Investigation of the time and spatial macro-scale of turbulence in a compound channel, Acta Sci. Pol. – Architectura 7, 4, 15-23 (in Polish).
  • [10] Kozioł, A.P. (2012), The Kolmogorov’s microscale eddies in a compound channel, Ann. Warsaw Univ. Life Sci. – SGGW, Land Reclamation 44, 2, 121-132, DOI:10.2478/v10060-011-0068-7.
  • [11] Kozioł, A.P. (2013), Three-dimensional turbulence intensity in a compound channel, J. Hydraul. Eng. 139, 8, 852-864, DOI: 10.1061/(ASCE)HY.1943-7900.0000739.
  • [12] Kubrak, E., J. Kubrak, and P.M. Rowiński (2013), Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea Canadensis), Acta Geophys. 61, 1, 194-210, DOI: 10.2478/s11600-012-0051-7.
  • [13] Mazurczyk, A. (2007), Scales of turbulence in compound channels with trees on floodplains, Publs. Inst. Geophys. Pol. Acad. Sc. E-7, 401, 169-176.
  • [14] McQuivey, R.S., T.N. Keefer, and M.A. Shirazi (1971), Basic data report on the turbulent spread of heat and matter, Open-file Report, USA Dept. of Interior Geological Survey, Fort Collins, USA, 166 pp.
  • [15] Monin, A.S., and A.M. Yaglom (1975), Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, MIT Press, Cambridge.
  • [16] Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys. 56, 3, 753-777, DOI: 10.2478/s11600-008-0017-y.
  • [17] Nepf, H.M., and E.R. Vivoni (2000), Flow structure in depth-limited, vegetated flow, J. Geophys. Res. 105, C12, 28547-28557, DOI: 10.1029/2000JC900145.
  • [18] Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, IAHR Monographs, Balkema, Rotterdam, 293 pp.
  • [19] Nikora, V.I. (1999), Origin of the “–1” spectral law in wall-bounded turbulence, Phys. Rev. Lett. 83, 4, 734-736, DOI: 10.1103/PhysRevLett.83.734.
  • [20] Nikora, V.I., and G.M. Smart (1997), Turbulence characteristics of New Zealand gravel-bed rivers, J. Hydraul. Eng. 123, 9, 764-773, DOI:10.1061/(ASCE)0733-9429(1997)123:9(764).
  • [21] Nikora, V.I., P. Rowiński, A. Sukhodolov, and D. Krasuski (1994), Structure of river turbulence behind warm-water discharge, J. Hydraul. Eng. 120, 2,191-208, DOI:10.1061/(ASCE)0733-9429(1994)120:2(191).
  • [22] Rowiński, P.M., and A. Mazurczyk (2006), Turbulent characteristics of flows through emergent vegetation. In: Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2006”, 6-8 September 2006, Lisbon, Portugal, 623-630.
  • [23] Rowiński, P.M., W. Czernuszenko, A.P. Kozioł, and J. Kubrak (2002), Properties of a streamwise turbulent flow field in an open two-stage channel, Arch. Hydro-Eng. Environ. Mech. 49, 2, 37-57.
  • [24] Sanjou, M., I. Nezu, S. Suzuki, and K. Itai (2010), Turbulence structure of compound open-channel flows with one-line emergent vegetation, In: J. Hydrodyn. B 22, 5, Suppl. 1, 577-581, DOI: 10.1016/S1001-6058(09)60255-9.
  • [25] Shiono, K., and D.W. Knight (1990), Mathematical models of flow in two or multi stage straight channels. In: Proc. Int. Conf. on River Flood Hydraulics, Wallingford, United Kingdom, 229-238.
  • [26] Shiono, K., and D.W. Knight (1991), Turbulent open-channel flows with variable depth across the channel, J. Fluid Mech. 222, 7, 617-646, DOI: 10.1017/S0022112091001246.
  • [27] Siniscalchi, F., V.I. Nikora, and J. Aberle (2012), Plant patch hydrodynamics in streams: Mean flow, turbulence, and drag forces, Water Resour. Res. 48, 1, W01513, DOI:10.1029/2011WR011050.
  • [28] Terrier, B., S. Robinson, K. Shiono, A. Paquier, and T. Ishigaki (2010), Influence of vegetation to boundary shear stress in open channel for overbank flow. In: Dittrich, Koll, Aberle, and Geisenhainer (eds.), Proc. Int. Conf. River Flow 2010, Bruansweig, Germany, Vol. 1, 285-292.
  • [29] Tominaga, A., I. Nezu, K. Ezaki, and H. Nakagawa (1989), Three-dimensional turbulent structure in straight open channel flows, J. Hydraul. Res. 27, 1, 149-173, DOI:10.1080/00221688909499249.
  • [30] Yang, K., S. Cao, and D.W. Knight (2007), Flow patterns in compound channels with vegetated floodplains, J. Hydraul. Eng. 133, 2, 148-159, DOI:10.1061/(ASCE)0733-9429(2007)133:2(148)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e936b85c-8a83-4185-b304-ad0e5ac7757c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.