PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real-Time Dynamic Load Identification

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Identyfikacja obiążeń dynamicznych w czasie rzeczywistym
Języki publikacji
EN
Abstrakty
EN
The thesis is devoted to the area of load identification problems. It is rather experimental in matter. However, the experimental research was supplemented with numerical simulations in order to expand the area of investigation. The thesis contains three main parts of research. In the first one (Chapter 2) the problem of load identification in road transport is considered. The identification task consists of estimation of the tire-pavement contact force as well as the detection of the vehicle mass. The research is devoted to the so-called road Weigh-in-Motion (WIM) techniques utilizing use of piezoelectric strain sensors. The feasibility study of two new types of WIM devices (i.e., a beam-shape one and a plate-shape one) were conducted. Their development was supported by numerical modeling validated experimentally. It allowed to investigate some factors important for the estimation of a moving load by means of proposed devices and moreover the load identification algorithms were proposed for these devices. In the further part of dissertation (Chapter 3), development and practical implementation of WIM device for the railway transport is discussed. A methodology based on the monitoring of strain development in the rail caused by the running train was proposed. The strain piezoelectric sensors were used and their readings were verified by another measurements techniques, e.g., strain gauges. The experimental research was carried out in-situ and enabled to validate the numerical model of the rail-sleeper-ground system. A numerical and experimental research allowed propose the identification algorithm and to analyze the crucial factors that need to be considered in order to obtain proper values of the dynamic forces exerted by train running on the rail. The research described in the fourth chapter is fundamental matter. An analysis of the process of a rigid body impact into a pneumatic absorber is considered. Two algorithms for real-time impact load parameters estimation have been defined. The identification of impacting object's mass and initial velocity (i.e., kinetic energy) have been considered. The proposed methods were experimentally and numerically verified.
PL
Przedmiotem rozprawy jest tematyka związana z identyfikacją obciążeń. Praca ma charakter głównie eksperymentalny, z wykorzystaniem modelowania numerycznego w celu rozszerzenia zbioru testów eksperymentalnych. Rozprawa zawiera trzy zasadnicze części merytoryczne. W pierwszej z nich (Rozdział 2) rozważany jest problem identyfikacji obciążeń w ruchu drogowym. Zagadnienie to rozumiane jest jako estymacja siły kontaktowej, występującej między kołami pojazdu a nawierzchnią drogi, oraz masy pojazdu. Przedmiotem badań są dynamiczne wagi drogowe (ang. Weigh-in-Motion), w których do pomiaru wykorzystano technologię piezoelektrycznych czujników odkształceń. Badania obejmowały symulacje numeryczne oraz testy w rzeczywistych warunkach drogowych dwóch wersji urządzeń bazujących na belkowym oraz płytowym przetwornik nacisku. Przeanalizowane zostały czynniki istotne ze względu na dokładność estymacji obciążeń oraz sformułowano algorytmy identyfikacji dedykowane dla dwóch badanych wersji urządzeń. Kolejna część rozprawy (Rozdział 3) poświęcona jest na rozwój i praktyczną realizację dynamicznej wagi kolejowej. Zaproponowano metodę wykorzystującą pomiar odkształceń szyny kolejowej wywołanych przejazdem pociągu. Do pomiaru zastosowano piezoelektryczne czujniki odkształceń których działanie zweryfikowano stosując tensometry oporowe. Zrealizowane zostały badania w warunkach polowych oraz wykonano model numeryczny układu szyna-podkład-podtorze. Testy eksperymentalne i symulacje numeryczne umożliwiły sformułowanie algorytmów identyfikacji oraz analizę parametrów, mających wpływ na dokładność wyznaczenia obciążeń. Rozważania przedstawione w czwartym rozdziale rozprawy mają charakter badań podstawowych. Analizowany był proces uderzenia spadającego obiektu w absorber pneumatyczny. Badania pozwoliły na zaproponowanie dwóch algorytmów detekcji parametrów obciążenia. Rozważano identyfikację masy i prędkości uderzającego obiektu (a więc i jego energii kinetycznej) bez konieczności lokalizacji czujników na uderzającym obiekcie. Zaproponowane metody zweryfikowano numerycznie i eksperymentalnie.
Rocznik
Tom
Strony
1--182
Opis fizyczny
Bibliogr. 170 poz., rys.
Twórcy
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Bibliografia
  • 1. P. Kołakowski, A. Orłowska, K. Sekuła, A. Świercz, and D. Sala. Two-year monitoring campaign of a railway truss bridge. In EVACES'09, 2009.
  • 2. K. Sekuła and P. Kołakowski. Piezo-based weigh-in-motion system for the railway transport. Structural Control and Health Monitoring, doi: 10.1002/stc.416, 2010.
  • 3. P. Kołakowski, D. Sala, K. Sekuła, Adaptronica sp. z.o.o., and Contec sp.j. A method of monitoring the truss structure of a bridge and a system for monitoring the truss structure of a bridge, patent pending application, 2009.
  • 4. G. Mikułowski. Adaptive impact absorbers based on magnetorheological fluids. PhD thesis, Institute of Fundamental Technological Research, 2008.
  • 5. J. Holnicki-Szulc, editor. Smart technologies for safety engineering. Wiley, 2008.
  • 6. T. Uhl. The inverse identification problem and its technical application. Archive Applied Mechanics, 77:325-337, 2007.
  • 7. J. Shaw, J. Sirkis, E. Friebele, R. Jones, and A. Kersey. Model of transverse plate impact dynamics for design of impact detection methodologies. AIAA J, 33:327-1334, 1995.
  • 8. N. Hu, H. Fukunaga, S. Matsumoto, B. Yan, and X. Peng. An efficient approach for identifying impact force using embedded piezoelectric sensors. International Journal of Impact Engineering, 34:1258-1271, 2007.
  • 9. M. Martin and J. Doyle. Impact force identification from wave propagation responses. International Journal of Impact Engineering, 18:65-77, 1996.
  • 10. A. Polak and J. Mroczka. Regularyzacja identyfikacji obiektów złożonych opisanymi modelami nieliniowymi. Pomiary Automatyka Kontrola, 9:190-194, 2007.
  • 11. S. Kim and S. Lee. Experimental identification for inverse problem of a mechanical system with a non-minimum phase based on singular value decomposition. Journal of Mechanical Science and Technology, 22:1504-1509, 2008.
  • 12. T. Uhl and K. Mendrok. Zastosowanie odwrotnego zadania identyfikacji do wyznaczania sił obciążających konstrukcje mechaniczne. Wydawnictwo Instytutu Technologii Eksploracji - PIB, 2005.
  • 13. H. Choi, A. Thite, and D. Thompson. A threshold for the use of tikhonov regularization in inverse force determination. Applied Acoustics, 67:700-719, 2006.
  • 14. E. Jacquelin, A. Bennani, and P. Hamelin. Force reconstruction: analysis and regularization of a deconvolution problem. Journal of Sound and Vibration, 265:81¬107, 2003.
  • 15. A. Björck. Numerical Methods in Scientific Computing. SIAM: Society for Industrial and Applied Mathematics, in press.
  • 16. N. Davendralingam and J. Doyle. Nonlinear identification problems under large deflections. Experimental Mechanics, 48:1741-2765, 2008.
  • 17. Q. Zhang, Ł. Jankowski, and Z. Duan. Identification of coexistent load and damage. Structural and Multidisciplinary Optimization, pages 1615-1488 (online), in press.
  • 18. C. Papadimitriou. Pareto optimal sensor locations for structural identification. Computer Methods in Applied Mechanics and Engineering, 194:1655-1673, 2005.
  • 19. Z. Li, J. Tang, and Q. Li. Optimal sensor locations for structural vibration measurements. Applied Acoustics, 65:807-818, 2004.
  • 20. Ł. Jankowski. Off-line identification of dynamic loads. Structural and Multidisciplinary Optimization, 37:609-623, 2009.
  • 21. C. Papadimitriou, Y. Haralampidis, and K. Sobczyk. Optimal experimental design in stochastic structural dynamics. Probabilistic Engineering Mechanics, 20:67-78, 2005.
  • 22. B. Błachowski. Identyfikcja obciążeń dynamicznych przy ograniczonej liczbie czujników. Modelowanie inżynierskie, 33:19-26, 2007.
  • 23. G. Suwała and Ł. Jankowski. Model-free identification of added mass. In Congress on Structural and Multidisciplinary Optimization, 2009.
  • 24. M. Klinkov and C. Fritzen. An updated comparison of the force reconstruction methods. Key Engineering Materials, 347:461-466, 2007.
  • 25. J. Briggs. Force identification using extracted modal parameters, with applications to glide height testing of computer hard disks. PhD thesis, Massachusetts Institute of Technology, 1991.
  • 26. L. Mujica, J. Vehi, J. Rodellar, and P. Kolakowski. A hybrid approach of knowledge-based reasoning for structural assessment. Smart Mater. Struct., 14:1554-1562, 2005.
  • 27. L. Mujica, J. Vehi, W. Staszewski, and K. Worden. Impact damage detection in aircraft composites using knowledge-based reasonin. Structural Health Monitoring, 7:215-230, 2008.
  • 28. J. Doyle. Experimentally determining the contact force during the transverse impact of an orthotropic plate. Journal of Sound and Vibration, 118:441-448, 1987.
  • 29. M. Martin and J. Doyle. Impact force location in frame structures. International Journal of Impact Engineering, 18:79-97, 1996.
  • 30. J. LeClerc, K. Worden, W. Staszewski, and J. Haywood. Impact detection in an aircraft composite panel, a neural-network approach. Journal of Sound and Vibration, 299:672-682, 2007.
  • 31. G. Yan and L. Zhou. Impact load identification of composite structure using genetic algorithms. Journal of Sound and Vibration, 319:869-884, 2009.
  • 32. X. Cao, Y. Sugiyama, and Y. Mitsui. Application of artificial neural networks to load identification. Computers and Structures, 69:63-78, 1998.
  • 33. E. Wu, C. Tsai, and L. Tseng. A deconvolution method for force reconstruction in rods under axial impact. Journal of Acoustical Society of America, 104:1418-1426, 1998.
  • 34. J. Zhu and Z. Lu. A time domain method for identifying dynamic loads on continuous systems. Journal of Sound and Vibration, 148:137-146, 1991.
  • 35. M. Tracy and F. Chang. Identifying impacts in composite plates with piezoelectric strain sensors, part i: Theory. Journal of Intelligent Material Systems and Structures, 9:920-928, 1998.
  • 36. S. Law, J. Bu, X. Zhu, and S. Chan. Moving load identification on a simply supported orthotropic plate. International Journal of Mechanical Sciences, 49:1262-1275, 2007.
  • 37. S. Law and Y. Fang. Moving force identification: optimal state estimation approach. Journal of Sound and Vibration, 239:233-254, 2001.
  • 38. S. Vanlanduit, P. Guillaume, B. Cauberghe, E. Parloo, G. De Sitter, and P. Verboven. On-line identification of operational loads using exogenous inputs. Journal of Sound and Vibration, 285:267-279, 2005.
  • 39. M. Klinkov and C. Fritzen. On line force reconstruction using robust observers. In Third European Workshop on Structural Health Monitoring, 2006.
  • 40. M. Klinkov and C. Fritzen. On line estimation of external loads from dynamic measurements. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA),Leuven, Belgium, 2006.
  • 41. P. Laplante. Real-time systems design and analysis. John Wiley & Sons, 2004.
  • 42. I. Lee snd J. Leong and S. Son, editors. Handbook of real-time and embedded systems. Taylor & Francis Group, 2008.
  • 43. Q. Li and C. Yao. Real-time concepts for embedded systems. CMP Books, 2003.
  • 44. P. Muhuri and K. Shukla. Real-time task scheduling with fuzzy uncertainty in processing times and deadlines. Applied Soft Computing, 8:1-13, 2008.
  • 45. P. Muhuri and K. Shukla. Real-time scheduling of periodic tasks with processing times and deadlines as parametric fuzzy numbers. Applied Soft Computing, 9:936-946, 2009.
  • 46. E. Olderog and H. Dierks. Real-Time Systems: Formal Specification and Automatic Verification. Cambridge University Press, 2008.
  • 47. G. Gautschi. Piezoelectric Sensorics. Spriger-Verlag Berlin Heidelberg, 2002.
  • 48. A. Rosochowski. Technical feasibility of a three-axis force transducer for measuring pressure and friction on the model die surface — prototype development. Journal of Materials Processing Technology, 115:192-204, 2001.
  • 49. R. Measures. Structural monitoring with fiber optic technology. Academic Press, 2001.
  • 50. R. Barret and J. Struts. Design and testing of 1/12th scale adaptive rotor. Smart Mater. Struct., 6:491-497, 1997.
  • 51. K. Uchino. Piezoelectric actuators 2006: Expansion from it robotics to ecological energy applications. Journal of Electroceramics, 20:301-311, 2007.
  • 52. V. Giurgiutiu. Structural health monitoring with piezoelectric wafer active sensors. Elsevier, 2008.
  • 53. H. Irschik, M. Krommer, and Y. Vetyukov. On the use of piezoelectric sensors in structural mechanics: Some novel strategies. Sensors, 10:5626-5641, 2010.
  • 54. O. Mack. Investigations of piezoelectric force measuring devices for use in legal weighing metrology. Measurement, 40:778-785, 2007.
  • 55. H. Georgiou and R. Mrad. Dynamic electromechanical drift model for pzt. Mechatronics, 18:81-89, 2008.
  • 56. A. Swiercz. Identyfikacja defektów w konstrukcjach pretowych na podstawie Metody Dystorsji Wirtualnych w domenie czestości. PhD thesis, Institute of Fundamental Technological Research, 2007.
  • 57. G. Mikułowski and J. Holnicki-Szulc. Adaptive landing gear concept—feedback control validation. Smart Materials and Structures, 16:2146-2158, 2007.
  • 58. R. Wiszowaty, K. Sekuła, J. Holnicki-Szulc, Adaptronica sp. z.o.o., and Institute of Fundamental Technological Research. Sposób identyfikacji prędkości zderzenia, masy oraz energii kinetycznej obiektu uderzającego w przeszkodę i urządzenie do identyfikacji prędkości zderzenia, masy oraz energii kinetycznej obiektu uderzającego w przeszkodę, 2010.
  • 59. K. Sekuła, R. Konowrocki, and T. Dębowski. Badanie nowego typu systemu ważenia pojazdów w ruchu. Drogi i Mosty, 3:69—88, 2009.
  • 60. K. Sekuła and J. Holnicki-Szulc. Validation of the new sensors system for monitoring of traffic load. In Fourth European conference on Structural Control, St. Petersburg, September 8-12, 2008.
  • 61. K. Sekuła, J. Holnicki-Szulc, and L. Knap. New sensors system for monitoring of traffic load. In S.H.M. pp.541-547. ISBN No.1-932078-41, 2004.
  • 62. K. Sekuła, B. Dyniewicz, and T. Debowski. Pomiar wielkości dynamicznych w transporcie kolejowym z wykorzystanie czujników piezoelektrycznych. Drogi i Mosty, 1:31-44, 2010.
  • 63. K. Sekuła and J. Holnicki-Szulc. Comparison of real time impact load identification procedures. In III Eccomas Thematic Conference on smart structures and materials Gdansk, Poland, July 9-11,, 2007.
  • 64. K. Sekuła, C. Graczykowski, and J. Holnicki-Szulc. On-line impact load identification. Structural Control and Health Monitoring, Article ID:STC-10-0129, Under review.
  • 65. P. Martin, Y. Feng, and X. Wang. Detector technology evaluation. Technical report, Department of Civil and Environmental Engineering University of Utah Traffic Lab, 2003.
  • 66. C. Koniditsiotis and B. Peters. Weigh-In-Motion Technology. National Library of Australia, 2000.
  • 67. J. Heidemann, F. Silva, X. Wang, G. Giuliano, and M. Hu. Sensors for unplanned roadway events-simulation and evaluation. Technical Report Metrans Project 04-08, METRANS, May 2005.
  • 68. R. Calderara. Long-term stable quartz wim sensors. In National Traffic Data Acquisition Conference Albuquerque, New Mexico, pages 613-626. Kistler Instrumente AG Winterthur CH-8408 Winterthur, Switzerland, 5-9 May 1996.
  • 69. L. Seegmiller. Utah commercial motor vehicle weight-in-motion data analysis and calibration methodology. PhD thesis, Brigham Young University, Department of Civil and Environmental Engineering, December 2006.
  • 70. R. Calderara, D. Barz, and E. Doupal. Advanced system solutions for new wim applications. Technical report, Kistler Instrumente AG and Transport Research Center, 2005.
  • 71. J. Oleński. Mały rocznik statystyczny Polski 2008. Zakład wydawnictw statystycznych, 2008.
  • 72. J. Gajda, R. Sroka, M. Stencel, A. Wajda, and T. Żegleń. Systemy ważenia pojazdów samochodowych w ruchu. Drogownictwo, 3/2001:78-81, 2001.
  • 73. A. Regan, M. Park, S. Nandiraju, and C.H. Yang. Strategies for successful implementation of virtual weigh and compliance systems in california. Technical Report UCB-ITS-PRR-2006-19, University of California, Irvine, October 2006.
  • 74. L. Cheng, H. Zhang, and Q. Li. Design of a capacitive flexible weighing sensor for vehicle wim system. Sensors, 7(8):1530-1544, 2007.
  • 75. B. McCall. States successful practices weigh-in-motion handbook. Technical report, Center for Transportation Research and Education, Iowa State University, December 1997.
  • 76. M. Hallenbeck and H. Weinblatt. Equipment for collecting traffic load data. Technical Report NCHRP 509, Transportation Research Board, 2004.
  • 77. VTT. Weigh-in-motion of axle and vehicle for Europe (wave)- calibration of the wim systems. Technical Report Work Package 3.2, Technical Research Centre of Finland, December 2000.
  • 78. S. Yuan, F. Ansari, X. Liu, and Y. Zhao. Optic fiber-based dynamic pressure sensor for wim system. Sensors and actuators, 120:53-58, 2005.
  • 79. P. Cosentino, B. Grossman, C. Taylor, W. Eckroth, R. Tongta, and T. Zhao. Fiber optic traffic sensor. In National Traffic Data Acquisition Conference Albuquerque, New Mexico, 5-9 May 1996.
  • 80. E. O'Brien and A. Znidarie. Weigh-in-motion of axle and vehicle for Europe (wave) - bridge wim systems (b-wim). Technical Report Work Package 1.2, University of Dublin, June 2001.
  • 81. W. Schulz, J. Seim, E. Udd, M. Morrell, H. Marty Laylor, G. McGill, and R. Edgar. Traffic monitoring/control and road condition monitoring using fiber optic based systems. In Smart Systems for Bridges, Structures, and Highways Conference, Newport Beach CA, 1999.
  • 82. J. Honefanger, J. Strawhorn, R. Athey, J. Carson, G. Conner, D. Jones, T. Kearney, J. Nicholas, P. Thurber, and R. Woolley. Commercial motor vehicle size and weight enforcement in Europe. Technical Report FHWA-PL-07-002, Federal Highway Administration U.S. Department of Transportation, July 2007.
  • 83. P. Burnos. Autokalibracja systemów wim, a korekta temperaturowa wyników ważenia. In Metrologia narzędzie poznania i droga rozwoju, 2007.
  • 84. L. Prochowski. Mechanika ruchu. Pojazdy samochodowe. WKŁ, 2005.
  • 85. U. Sönmez, N. Sverdlova, R. Tallon, D. Klinikowski, D. Streit, D. Klinikowski, and D. Streit. Static calibration methodology for weigh-in-motion systems. International Journal of Heavy Vehicle Systems, 7, No.2/3:191 - 204, 2000.
  • 86. R. Quinley. Installation of weigh-in-motion systems. In National Traffic Data Acquisition Conference Albuquerque, May 5-9 1996.
  • 87. J. Gajda, R. Sroka, M. Stencel, and T. Żegleń. Kalibracja systemów ważenia pojazdów w ruchu. Drogownictwo, 1:90-94, 2002.
  • 88. U. Sönmez, D. Streit, R. Tallon, and D. Klinikowski. Weigh-in-motion studies using strip-type sensors: the preliminary results. International Journal ofHeavy Vehicle Systems, 15:1-26, 2008.
  • 89. J. Gajda and R. Sroka. Wieloczujnikowa fuzja danych w systemach ważenia pojazdów w ruchu. Pomiary Akustyka Kontrola, 9:550-553, 2007.
  • 90. F. Wang and R. Machemehl. Predicting truck tire pressure effects upon pavement performance. Technical Report SWUTC/06/167864-1, Center for Transportation Research, University of Texas, April 2006.
  • 91. W. Cunagin and A. Grubbs. Automated acquisition of truck tire pressure data. Transportation Research Record information, 1123:112-121, 1987.
  • 92. W. Siłka. Teoria ruchu samochodu. Wydawnictwa Naukowo-Techniczne, 2002.
  • 93. H. Lee and D. Saravanos. The effect of temperature dependent material non-linearities on the response of piezoelectric composite plates. Technical Report NASA TM—97-206216, National Aeronautics and Space Administration, Lewis Research Center Cleveland, November 1997.
  • 94. J. Gajda, R. Sroka, M. Stencel, A. Wajda, and T. Żegleń. Pomiary parametrów ruchu drogowego - ocena dokładności. Drogownictwo, 10:323-331, 2003.
  • 95. Theory and Modeling Guide Volume I: ADINA.
  • 96. A. Premount. Active vibration control. In Structural Control and Health Monitoring Advanced Course - SMART'01, 2001.
  • 97. T. Kwon and B. Aryal. Development of a pc-based eight-channel wim system. Final Report MN/RC 2007-45, Northland Advanced Transportation Systems Laboratories University of Minnesota Duluth, October 2007.
  • 98. C. Helg and L. Pfohl. Signal processing requirements for wim lineas type 9195. Technical report, Kistler Instrumente AG, Winterthur, Switzerland, 2000.
  • 99. A. Matsumoto, Y. Sato, H. Ohno, M. Tomeoka, K. Matsumoto, J. Kurihara, T. Ogino, M. Tanimoto, Y. Kishimoto, Y. Sato, and T. Nakai. A new measuring method of wheel-rail contact forces and related considerations. Wear, 265:1518-1525, 2008.
  • 100. H. Kanehara and T. Fujioka. Measuring rail/wheel contact points of running railway vehicles. Wear, 253:275-283, 2002.
  • 101. F. Moses. Weigh-in-motion system using instrumented bridges transportation. Engineering Journal, 105:233-249, 1979.
  • 102. R. Karoumi, A. Liljencranz, G. James, E. Bruwhiler, A. Herwig, and F. Carlsson. Sustainable bridges - assessment for future traffic demands and longer lives. Technical report, KTH and EPFL and DB and COWI and LTH, 2007.
  • 103. P. Chatterjee, E. O'Brien, Y. Li, and A. Gonzalez. Wavelet domain analysis for identification of vehicle axles from bridge measurements. Computers and Structures, 84:1792-1801, 2006.
  • 104. R. Karoumi, J. Wiberg, and A. Liljencrantz. Monitoring traffic loads and dynamic effects using an instrumented railway bridge. Engineering Structures, 27:1813-1819, 2005.
  • 105. A. Liljencrantz, R. Karoumi, and P. Olofsson. Implementing bridge weigh-in-motion for railway traffic. Computers and Structures, 85:80-88, 2007.
  • 106. M. Niedzwiecki and A. Wasilewski. New algorithms for the dynamic weighing of freight trains. Control Engineering Practice, 5:603-618, 1997.
  • 107. D. Senyanskiy. Problem of increasing the accuracy of railway carriages weighing in motion. In XVII IMEKO World Congress Metrology in the 3rd Millennium June 22-27, 2003.
  • 108. Systemy ważenia DGW-B SHENK (http://www.schenckprocess.pl/wagi/wagi-kolejowe/).
  • 109. G. James. Analysis of Traffic Load Effects on Railway Bridges. PhD thesis, Structural Engineering Division Royal Institute of Technology, Stockholm, Sweden, 2003.
  • 110. A. Johansson and J. Nielsen. Out-of-round railway wheels-wheel-rail contact forces and track response derived from field tests and numerical simulations. Journal of Rail and Rapid Transit, 217:135-146, 2003.
  • 111. A. Laudati, G. Lanza, A. Cusano, A. Cutolo, M. Giordano, G. Breglio, and A. Antonelli. Railway monitoring and train tracking by fiber brag grating sensors: a case study in Italy. In Proc. of the 4th European Workshop on Structural Health Monitoring, Krakow, Poland, 2-4 July, ISBN 978-1-932078-94-7, 2008.
  • 112. Gotcha company. Wheel flat detection and axle load measurement system. Technical report, TagMaster, 2005.
  • 113. Kistler company. Railcar weighing on mainline tracks. Technical report, Kistler, 2008.
  • 114. A. Bracciali and P. Folgarait. New sensor for lateral and vertical wheel-rail forces measurements. In Conference on Railway Engineering, London, 6-7 July, 2004.
  • 115. H. Inoue, J. Harrigan, and S. Reid. Review of inverse analysis for indirect measurement of impact force. Appl. Mech. Rev, 54:503-524, 2001.
  • 116. J. Nielsen and J. Oscarsson. Simulation of dynamic train-track interaction with state-dependent track properties. Journal of Sound and Vibration, 275:515-532, 2004.
  • 117. M. Bahrekazemi. Train-induced ground vibration and its prediction. PhD thesis, Royal Institute of Technology, Dept. of Civil and Architectural Engineering, 2004.
  • 118. A. De Man. Dynatrack: a survay of dynamic railway track properties and their quality. PhD thesis, Delft University of Technology, Delft University of Technology, 2002.
  • 119. N. Chaar. Wheelset structural flexibility and track flexibility in vehicle-track dynamic interaction. PhD thesis, Royal Institute of Technology, Aeronautical and Vehicle Engineering, 2007.
  • 120. K. Knothe and S. Grassie. Modelling of railway track and vehicle/track interaction at high frequencies. Vehicle System Dynamics, 22:209 - 262, 1993.
  • 121. D. Steffens. Identification and development of a model of railway track dynamic behaviour. PhD thesis, Queensland University of Technology, Faculty of Built Environment and Engineering, 2005.
  • 122. R. Bogacz and Z. Kowalska. Computer simulation of the interaction between a wheel and a corrugated rail. European journal of mechanics. A. Solids, 20:673¬684, 2001.
  • 123. A. Fenander. A fractional derivative railpad model included in a railway track model. Journal of Sound and Vibration, 212:778-892, 1998.
  • 124. S. Iwnicki, editor. A Handbook of Railway Vehicle Dynamics. CRC Press, 2006.
  • 125. W. Cai, Z. Wen, X. Jin, and W. Zhai. Dynamic stress analysis of rail joint with height difference defect using finite element method. Engineering Failure Analysis, 14:1488-1499, 2007.
  • 126. W. Zhai and Z. Cai. Dynamic interaction between a lumped mass vehicle and a discretely supported continuous rail track. Computers and Structures, 63:987-997, 1997.
  • 127. S. Kaewunruen. Experimental and numerical studies for evaluating dynamic behaviour of prestresed concrete sleppers subject to the severe impact loading. PhD thesis, University of Wollongong., 2007.
  • 128. A. Soderberg and S. Bjorklund. Validation of a simplified numerical contact model. Tribology International, 40:926-933, 2008.
  • 129. C. Bajer and P. Tokaj. Dynamika toru z podkładami stalowymi klinowymi. Drogi i mosty, 2:5-35, 2006.
  • 130. S. Timoshenko. Vibration problems in Engineering. D. Van Nostrand Co., 1955.
  • 131. R. Hinderbrand. Vertical vibration attention in railway track: a wave approach. Journal of Sound and Vibration, 247:857-874, 2001.
  • 132. Katalog wagonów towarowych, 2005.
  • 133. X. Zhang. Conceptual Study of Adaptive Energy Absorbers. PhD thesis, The Hong Kong University of Science and Technology, 2009.
  • 134. J. Holnicki-Szulc and L. Knap. Adaptive crashworthiness concept. International Journal of Impact Engineering, 30:639-663, 2004.
  • 135. L. Knap. Aktywne sterowanie energii zderzeń w ustrojach adaptacyjnych. PhD thesis, Institute of Fundamental Technological Research, 2000.
  • 136. H. Janocha, editor. Adapronics and Smart Structurs. Springer-Verlag Berlin Heidelberg, 2007.
  • 137. C. Graczykowski and J. Holnicki-Szulc. Protecting offshore wind turbines against ship impacts by means of adaptive inflatable structures. Shock and Vibration, 16:335-353, 2009.
  • 138. M. Ostrowski, P. Griskevicius, and J. Holnicki-Szulc. Pyro-adaptive impact energy absorber. In Odporność udarowa konstrukcji, December 5-8, Rynia near Warsaw, Poland, 2006.
  • 139. M. Wikło and J. Holnicki-Szulc. Optimal design of adaptive structures: Part i. remodeling for impact reception. Structural and Multidisciplinary Optimization, 37:305-318, 2009.
  • 140. M. Wikło and J. Holnicki-Szulc. Optimal design of adaptive structures: Part ii. adaptation to impact loads. Structural and Multidisciplinary Optimization, 37:351-366, 2009.
  • 141. M. Ostrowski, P. Griskevicius, and J. Holnicki-Szulc. Feasibility study of an adaptive energy absorbing system for passenger vehicles. In CMM-2005 - Computer Methods in Mechanics, June 21-24, 2005, Częstochowa, Poland.
  • 142. W. Witteman. Improved Vehicle Crashworthiness Design by Control of the Energy Absorption for Different Collision Situations. PhD thesis, Eindhoven University of Technology, 1999.
  • 143. S. Deshmukh and G. McKinley. Adaptive energy-absorbing materials using field-responsive fluid-impregnated cellular solids. Smart Materials and Structures. 16:106-113, 2007.
  • 144. J. Holnicki-Szulc, P. Pawlowski, and M. Wikło. High-performance impact absorbing materials—the concept, design tools and applications. Smart Mater. Struct.. 12:461-467, 2003.
  • 145. Ł. Jankowski and G. Mikułowski. Adaptive landing gear: optimum control strategy and improvement potential. In International Conference on Noise and Vibration Engineering, 8-20 September , Leuven, Belgium, 2006.
  • 146. C. Graczykowski and J. Holnicki-Szulc. Protecting offshore wind turbines against ship impacts by means of adaptive inflatable structures. Shock and Vibration, 16:335-353, 2009.
  • 147. C. Graczykowski and J. Holnicki-Szulc. Adaptive flow control based airbags for waterborne and aeronautical application. In Proc. of the 4th European Conference on Structural Control, September 8-12, St. Petersburg, Russia, 2008.
  • 148. J. Holnicki-Szulc, C. Graczykowski, G. Mikułowski, A. Mróz, and P. Pawłowski. Smart technologies for adaptive impact absorption. Solid State Phenomena, 154:187-194, 2009.
  • 149. G. Mikułowski and J. Holnicki-Szulc. Fast controller and control algorithms for MR-based adaptive impact absorbers - force based control. Machine Dynamics Problems, 30:113-122, 2006.
  • 150. X. Wang. Impact locations in structures using energy flow estimators with piezo¬electric sensors. PhD thesis, University of Sciences and Technology (INSA) Lyon-Department of Electrical Engineering, 2009.
  • 151. H. Sekine and S. Atobe. Identification of locations and force histories of multiple point impacts on composite isogrid-stiffened panels. Composite Structures, 89:1-7, 2009.
  • 152. J. Holnicki-Szulc, G. Mikułowski, J. Motylewski, P. Pawłowski, and Z. Wołejsza. Adaptacyjny system dyssypacji energii w podwoziu lotniczym. In XXXIV Ogólnopolskie Sympozjum Diagnostyka Maszyn, Węgierska Górka, 2007.
  • 153. W. Stronge. Impact Mechanics. Cambridge University Press, 2000.
  • 154. N. Liepmann and A. Roshko. Elements of Gasdynamics. John Wiley & Sons, New York, 1957.
  • 155. A. Shapiro. The Dynamics and Thermodynamics of Compressible Fluid Flow. Pergamon Press, New York, 1953.
  • 156. G. Van Wylen and R. Sonntag. Fundamentals of Classical Thermodynamics. John Wiley & Sons, 1978.
  • 157. T. Edwards. Effects of aliasing on numerical integration. Mechanical Systems and Signal Processing, 21:165-176, 2007.
  • 158. M. Sjöberg and L. Kari. Testing of nonlinear interaction effects of sinusoidal and noise excitation on rubber isolator stiffness. Polymer Testing, 22:343-351, 2003.
  • 159. J. Diani, B. Fayolle, and P. Gilormini. A review on the mullins effect. European Polymer Journal, 45:601-612, 2009.
  • 160. R. Gryboś. Teoria Uderzenia w Dyskretnych układach mechanicznych. Państwowe Wydawnictwo Naukowe, 1969.
  • 161. L. Gracia, E. Peńa, J. Royo, J. Pelegay, and B. Calvo. A comparison between pseudo-elastic and damage models for modeling the mullins effect in industrial rubber components. Mechanics Research Communications, 36:769-776, 2009.
  • 162. T. Szolc, P. Tauzowski, R. Stocki, and J. Knabel. Damage identification in vibrating rotor-shaft systems by efficient sampling approach. Mech. Syst. Signal Process, 47:533-557, 2009.
  • 163. W. Staszewski. Intelligent signal processing for damage detection in composite materials. Composites Science and Technology, 62:941-950, 2002.
  • 164. C. Graczykowski, G. Mikułowski, K. Sekuła, A. Mróz, Adaptronica sp. z.o.o., and Contec sp.j. Sposób dyssypacji energii uderzenia i absorber pneumatyczny. patent, 2009.
  • 165. A. Preumont and V. Piefort. Finite element modeling of smart piezoelectric shell structures. In 5th National Congress on Theoretical and Applied Mechanics-Louvain-la-Neuve, May 2000.
  • 166. T. G. Zieliński. Metoda Impulsowych Dystorsji Wirtualnych z zastosowaniem do modelowania i identyfikacji defektów w konstrukcjach. PhD thesis, IPPT-PAN, 2003.
  • 167. R. Le Letty, F. Claeyssen, F. Barillot, and N. Lhermet. Amplified piezoelectric actuators for aerospace applications. In AMAS Workshop on Smart Materials and Structures SMART'03, pages 51-62, September 2003.
  • 168. T. Ikeda. Fundamentals of Piezoelectricity. Oxford University Press, 1990.
  • 169. J. Daily, R. Strickland, and J. Daily. Crush analysis with under-rides and the coefficient of restitution. In 24th Annual Special Problems in Traffic Crash Reconstruction, 2006.
  • 170. R. Brach. Mechanical impact dynamics: rigid body collisions. John Wiley & Sons, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9348596-187c-4da3-8132-09022b74d3aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.